Coronavirus


The start of a new year, decade, century or millennium is always associated with a sense of renewal and hope.  Little did we know that in January 2020 a global threat had hatched and was growing in the city of Wuhan, Hubei Province, China.  A virus of the family coronaviridae had mutated and jumped from animal to man where it found a new host and a vehicle to spread itself.   Several weeks later the World became aware of the new threat and in the West … we ignored it.  Maybe we still remember the SARS epidemic which was heralded as a potential global catastrophe but was contained in the Far East and fizzled out.  So, maybe we assumed this SARS-like virus would do the same.

It didn’t.  This mutant was different.  It caused a milder illness and unwitting victims were infectious before they were symptomatic.  And most got better on their own, so they spread the mutant to many other people.  Combine that mutant behaviour with the winter (when infectious diseases spread more easily because we spend more time together indoors), Chinese New Year and global air travel … and we have the perfect recipe for cooking up a global pandemic of a new infectious disease.  But we didn’t know that at the time and we carried on as normal, blissfully unaware of the catastrophe that was unfolding.

By February 2020 it became apparent that the mutant had escaped containment in China and was wreaking havoc in other countries – with Italy high on the casualty list.  We watched in horror at the scenes on television of Italian hospitals overwhelmed with severely ill people fighting for breath as the virus attacked their lungs.  The death toll rose sharply but we still went on our ski holidays and assumed that the English Channel and our Quarantine Policy would protect us.

They didn’t.  This mutant was different.  We now know that it had already silently gained access into the UK and was growing and spreading.  The first COVID-19 death reported in the UK was in early March 2020 and only then did we sit up and start to take notice.  This was getting too close to home.

But it was too late.  The mathematics of how epidemics spread was worked out 100 years ago, not long after the 1918 pandemic of Spanish Flu that killed tens of millions of people before it burned itself out.  An epidemic is like cancer.  By the time it is obvious it is already far advanced because the growth is not linear – it is exponential.

As a systems engineer I am used to building simulation models to reveal the complex and counter-intuitive behaviour of nonlinear systems using the methods first developed by Jay W. Forrester in the 1950’s.  And when I looked up the equations that describe epidemics (on Wikipedia) I saw that I could build a system dynamics model of a COVID-19 epidemic using no more than an Excel spreadsheet.

So I did.  And I got a nasty surprise.  Using the data emerging from China on the nature of the spread of the mutant virus, the incidence of severe illness and the mortality rate … my simple Excel model predicted that, if COVID-19 was left to run its natural course in the UK, then it would burn itself out over several months but the human cost would be 500,000 deaths and the NHS would be completely overwhelmed with a “tsunami of sick”.  And I could be one of them!  The fact that there is no treatment and no vaccine for this novel threat excluded those options.  My basic Excel model confirmed that the only effective option to mitigate this imminent catastrophe was to limit the spread of the virus through social engineering i.e. an immediate and drastic lock-down.  Everyone who was not essential to maintaining core services should “Stay at home, Protect the NHS and Save lives“.  That would become the mantra.  And others were already saying this – epidemiologists whose careers are spent planning for this sort of eventuality.  But despite all this there still seemed to be little sense of urgency, perhaps because their super-sophisticated models predicted that the peak of the UK epidemic would be in mid-June so there was time to prepare.  My basic model predicted that the peak would be in mid-April, in about 4 weeks, and that it was already too late to prevent about 50,000 deaths.

It turns out I was right.  That is exactly what happened.  By mid-March 2020 London was already seeing an exponential rise in hospital admissions, intensive care admissions and deaths and suddenly the UK woke up and panicked.  By that time I had enlisted the help of a trusted colleague who is a public health doctor and who had studied epidemiology, and together we wrote up and published the emerging story as we saw it:

An Acute Hospital Demand Surge Planning Model for the COVID-19 Epidemic using Stock-and-Flow Simulation in Excel: Part 1. Journal of Improvement Science 2020: 68; 1-20.  The link to download the full paper is here.

I also shared the draft paper with another trusted friend and colleague who works for my local clinical commissioning group (CCG) and I asked “Has the CCG a sense of the speed and magnitude of what is about to happen and has it prepared for the tsunami of sick that primary care will need to see?

What then ensued was an almost miraculous emergence of a coordinated and committed team of health care professionals and NHS managers with a single, crystal clear goal:  To design, build and deliver a high-flow, drive-through community-based facility to safely see-and-assess hundreds of patients per day with suspected COVID-19 who were too sick/worried to be managed on the phone, but not sick enough to go to A&E.  This was not a Nightingale Ward – that was a parallel, more public and much more expensive endeavour designed as a spillover for overwhelmed acute hospitals.  Our purpose was to help to prevent that and the time scale was short.  We had three weeks to do it because Easter weekend was the predicted peak of the COVID-19 surge if the national lock-down policy worked as hoped.  No one really had an accurate estimate how effective the lock-down would be and how big the peak of the tsunami of sick would rise as it crashed into the NHS.  So, we planned for the worst and hoped for the best.  The Covid Referral Centre (CRC) was an insurance policy and we deliberately over-engineered it use to every scrap of space we had been offered in a small car park on the south side of the NEC site.

The CRC needed to open by Sunday 12th April 2020 and we were ready, but the actual opening was delayed by NHS bureaucracy and politics.  It did eventually open on 22nd April 2020, just four weeks after we started, and it worked exactly as designed.  The demand was, fortunately, less than our worst case scenario; partly because we had missed the peak by 10 days and we opened the gates to a falling tide; and partly because the social distancing policy had been more effective than hoped; and partly because it takes time for risk-averse doctors to develop trust and to change their ingrained patterns of working.  A drive-thru COVID-19 see-and-treat facility? That was innovative and untested!!

The CRC expected to see a falling demand as the first wave of COVID-19 washed over, and that exactly is what happened.  So, as soon as that prediction was confirmed, the CRC was progressively repurposed to provide other much needed services such as drive-thru blood tests, drive-thru urgent care, and even outpatient clinics in the indoor part of the facility.

The CRC closed its gates to suspected COVID-19 patients on 31st July 2020, as planned and as guided by the simple Excel computer model.

This is health care systems engineering in action.

And the simple Excel model has been continuously re-calibrated as fresh evidence has emerged.  The latest version predicts that a second peak of COVID-19 (that is potentially worse than the first) will happen in late summer or autumn if social distancing is relaxed too far (see below).

But we don’t know what “too far” looks like in practical terms.  Oh, and a second wave could kick off just just when we expect the annual wave of seasonal influenza to arrive.  Or will it?  Maybe the effect of social distancing for COVID-19 in other countries will suppress the spread of seasonal flu as well?  We don’t know that either but the data of the incidence of flu from Australia certainly supports that hypothesis.

We may need a bit more health care systems engineering in the coming months. We shall see.

Oh, and if we are complacent enough to think a second wave could never happen in the UK … here is what is happening in Australia.

Co-Diagnosis, Co-Design and Co-Delivery

The thing that gives me the biggest buzz when it comes to improvement is to see a team share their story of what they have learned-by-doing; and what they have delivered that improves their quality of life and the quality of their patients’ experience.

And while the principles that underpin these transformations are generic, each story is unique because no two improvement challenges are exactly the same and no two teams are exactly the same.

The improvement process is not a standardised production line.  It is much more organic and adaptive experience and that requires calm, competent, consistent, compassionate and courageous facilitation.

So when I see a team share their story of what they have done and learned then I know that behind the scenes there will have been someone providing that essential ingredient.

This week a perfect example of a story like this was shared.

It is about the whole team who run the Diabetic Complex Cases Clinic at Guy’s and St. Thomas’ NHS Trust in London.  Everyone involved in the patient care was involved.  It tells the story of how they saw what might be possible and how they stepped up to the challenge of learning to apply the same principles in their world.  And it tells their story of what they diagnosed, what they designed and what they delivered.

The facilitation and support was provided Ellen Pirie who works for the Health Innovation Network (HIN) in South London and who is a Level 2 Health Care Systems Engineer.

And the link to the GSTT Diabetic Complex Clinic Team story is here.

Carveoutosis Multiforme Fulminans

This is the name given to an endemic, chronic, systemic, design disease that afflicts the whole NHS that very few have heard of, and even fewer understand.

This week marked two milestones in the public exposure of this elusive but eminently treatable health care system design illness that causes queues, delays, overwork, chaos, stress and risk for staff and patients alike.

The first was breaking news from the team in Swansea led by Chris Jones.

They had been grappling with the wicked problem of chronic queues, delays, chaos, stress, high staff turnover, and escalating costs in their Chemotherapy Day Unit (CDU) at the Singleton Hospital.

The breakthrough came earlier in the year when we used the innovative eleGANTT® system to measure and visualise the CDU chaos in real-time.

This rich set of data enabled us, for the first time, to apply a powerful systems engineering  technique called counterfactual analysis which revealed the primary cause of the chaos – the elusive and counter-intuitive design disease carvoutosis multiforme fulminans.

And this diagnosis implied that the chaos could be calmed quickly and at no cost.

But that news fell on slightly deaf ears because, not surprisingly, the CDU team were highly sceptical that such a thing was possible.

So, to convince them we needed to demonstrate the adverse effect of carveoutosis in a way that was easy to see.  And to do that we used some advanced technology: dice and tiddly winks.

The reaction of the CDU nurses was amazing.  As soon as they ‘saw’ it they clicked and immediately grasped how to apply it in their world.  They designed the change they needed to make in a matter of minutes.


But the proof-of-the-pudding-is-in-the eating and we arranged a one-day-test-of-change of their anti-carveout design.

The appointed day arrived, Wednesday 19th June.  The CDU nurses implemented their new design (which cost nothing to do).  Within an hour of the day starting they reported that the CDU was strangely calm.   And at the end of the day they reported that it had remained strangely calm all day; and that they had time for lunch; and that they had time to do all their admin as they went; and that they finished on time; and that the patients did not wait for their chemotherapy; and that the patients noticed the chaos-to-calm transformation too.

They treated just the same number of patients as usual with the same staff, in the same space and with the same equipment.  It cost nothing to make the change.

To say they they were surprised is an understatement!  They were so surprised and so delighted that they did not want to go back to the old design – but they had to because it was only a one-day-test-of-change.

So, on Thursday and Friday they reverted back to the carveoutosis design.  And the chaos returned.  That nailed it!  There was a riot!!  The CDU nurses refused to wait until later in the year to implement their new design and they voted unanimously to implement it from the following Monday.  And they did.  And calm was restored.


The second milestone happened on Thursday 11th July when we ran a Health Care Systems Engineering (HCSE) Masterclass on the very same topic … chronic systemic carveoutosis multiforme fulminans.

This time we used the dice and tiddly winks to demonstrate the symptoms, signs and the impact of treatment.  Then we explored the known pathophysiology of this elusive and endemic design disease in much more depth.

This is health care systems engineering in action.

It seems to work.

Leverage Points

One of the most surprising aspects of systems is how some big changes have no observable effect and how some small changes are game-changers. Why is that?

The technical name for this phenomenon is leverage points.

When a nudge is made at a leverage point in a real system the impact is amplified – so a small cause can have a big effect.

And when a big kick is made where there is no leverage point the effort is dissipated. Like flogging a dead horse.

Other names for leverage points are triggers, buttons, catalysts, fuses etc.


The fact that there is a big effect does not imply it is a good effect.

Poking a leverage point can trigger a catastrophe just as it can trigger a celebration. It depends on how it is poked.

Perhaps that is one reason people stay away from them.

But when our heath care system performance is in decline, if we do nothing or if we act but stay away from leverage points (i.e. flog the dead horse) then we will deny ourselves the opportunity of improvement.

So, we need a way to (a) identify the leverage points and (b) know how to poke them positively and know how to not poke them into delivering a catastrophe.


Here is a couple of real examples.


The time-series chart above shows the A&E performance of a real acute trust.  Notice the pattern as we read left-to-right; baseline performance is OKish and dips in the winters, and the winter dips get deeper but the baseline performance recovers.  In April 2015 (yellow flag) the system behaviour changes, and it goes into a steady decline with added winter dips.  This is the characteristic pattern of poking a leverage point in the wrong way … and the fact it happened at the start of the financial year suggests that Finance was involved.  Possibly triggered by a cost-improvement programme (CIP) action somewhere else in the system.  Save a bit of money here and create a bigger problem over there. That is how systems work. Not my budget so not my problem.

Here is a different example, again from a real hospital and around the same time.  It starts with a similar pattern of deteriorating performance and there is a clear change in system behaviour in Jan 2015.  But in this case the performance improves and stays improved.  Again, the visible sign of a leverage point being poked but this time in a good way.

In this case I do know what happened.  A contributory cause of the deteriorating performance was correctly diagnosed, the leverage point was identified, a change was designed and piloted, and then implemented and validated.  And it worked as predicted.  It was not a fluke.  It was engineered.


So what is the reason that the first example much more commonly seen than the second?

That is a very good question … and to answer it we need to explore the decision making process that leads up to these actions because I refuse to believe that anyone intentionally makes decisions that lead to actions that lead to deterioration in health care performance.

And perhaps we can all learn how to poke leverage points in a positive way?

Commissioned Improvement

This recent tweet represents a significant milestone.  It formally recognises and celebrates in public the impact that developing health care systems engineering (HCSE) capability has had on the culture of the organisation.

What is also important is that the HCSE training was not sought and funded by the Trust, it was discovered by chance and funded by their commissioners, the local clinical commissioning group (CCG).


The story starts back in the autumn of 2017 and, by chance, I was chatting with Rob, a friend-of-a-friend, about work. As you do. It turned out that Rob was the CCG Lead for Unscheduled Care and I was describing how HCSE can be applied in any part of any health care system; primary care, secondary care, scheduled, unscheduled, clinical, operational or whatever.  They are all parts of the same system and the techniques and tools of improvement-by-design are generic.  And I described lots of real examples of doing just that and the sustained improvements that had followed.

So he asked “If you were to apply this approach to unscheduled care in a large acute trust how would you do it?“.  My immediate reply was “I would start by training the front line teams in the HCSE Level 1 stuff, and the first step is to raise awareness of what is possible.  We do that by demonstrating it in practice because you have to see it and experience it to believe it.

And so that is what we did.

The CCG commissioned a one-year HCSE Level 1 programme for four teams at University Hospitals of North Midlands (UHNM) and we started in January 2018 with some One Day Flow Workshops.

The intended emotional effect of a Flow Workshop is surprise and delight.  The challenge for the day is to start with a simulated, but very realistic, one-stop outpatient clinic which is chaotic and stressful for everyone.  And with no prior training the delegates transform it into a calm and enjoyable experience using the HCSE approach.  It is called emergent learning.  We have run dozens of these workshops and it has never failed.

After directly experiencing HCSE working in practice the teams that stepped up to the challenge were from ED, Transformation, Ambulatory Emergency Care and Outpatients.


The key to growing HCSE capability is to assemble small teams, called micro-system design teams (MSDTs) and to focus on causes that fall inside their circle of control.

The MSDT sessions need to be regular, short, and facilitated by an experienced HCSE who has seen it, done it and can teach it.

In UHNM, the Transformation team divided themselves between the front-line teams and they learned HCSE together.  Here’s a picture of the ED team … left to right we have Alex, Mark and Julie (ED consultants) then Steve and Janina (Transformation).  The essential tools are a big table, paper, pens, notebooks, coffee and a laptop/projector.

The purpose of each session is empirical learning-by-doing i.e. using a real improvement challenge to learn and practice the method so that before the end of the programme the team can confidently “fly” solo.

That is the key to continued growth and sustained improvement.  The HCSE capability needs to become embedded.

It is good fun and immensely rewarding to see the “ah ha” moments and improvements happen as the needle on the emotometer moves from “Can’t Do” to “Can Do”.

Metamorphosis is re-arranging what you already have in a way that works better.


The tweet is objective evidence that demonstrates the HCSE programme delivers as designed.  It is fit-for-purpose.  It is called validation.

The other objective evidence of effectiveness comes from the learning-by-doing projects themselves.  And for an individual to gain a coveted HCSE Level 1 Certificate of Competency requires writing up to a publishable quality and sharing the story. Warts-and-all.

To read the full story of just click here

And what started this was the CCG who had the strategic vision, looked outside themselves for innovative approaches, and demonstrated the courage to take a risk.

Commissioned Improvement.

Measuring Chaos

One of the big hurdles in health care improvement is that most of the low hanging fruit have been harvested.

These are the small improvement projects that can be done quickly because as soon as the issue is made visible to the stakeholders the cause is obvious and the solution is too.

This is where kaizen works well.

The problem is that many health care issues are rather more difficult because the process that needs improving is complicated (i.e. it has lots of interacting parts) and usually exhibits rather complex behaviour (e.g. chaotic).

One good example of this is a one stop multidisciplinary clinic.

These are widely used in healthcare and for good reason.  It is better for a patient with a complex illness, such as diabetes, to be able to access whatever specialist assessment and advice they need when they need it … i.e. in an outpatient clinic.

The multi-disciplinary team (MDT) is more effective and efficient when it can problem-solve collaboratively.

The problem is that the scheduling design of a one stop clinic is rather trickier than a traditional simple-but-slow-and-sequential new-review-refer design.

A one stop clinic that has not been well-designed feels chaotic and stressful for both staff and patients and usually exhibits the paradoxical behaviour of waiting patients and waiting staff.


So what do we need to do?

We need to map and measure the process and diagnose the root cause of the chaos, and then treat it.  A quick kaizen exercise should do the trick. Yes?

But how do we map and measure the chaotic behaviour of lots of specialists buzzing around like blue-***** flies trying to fix the emergent clinical and operational problems on the hoof?  This is not the linear, deterministic, predictable, standardised machine-dominated production line environment where kaizen evolved.

One approach might be to get the staff to audit what they are doing as they do it. But that adds extra work, usually makes the chaos worse, fuels frustration and results in a very patchy set of data.

Another approach is to employ a small army of observers who record what happens, as it happens.  This is possible and it works, but to be able to do this well requires a lot of experience of the process being observed.  And even if that is achieved the next barrier is the onerous task of transcribing and analysing the ocean of harvested data.  And then the challenge of feeding back the results much later … i.e. when the sands have shifted.


So we need a different approach … one that is able to capture the fine detail of a complex process in real-time, with minimal impact on the process itself, and that can process and present the wealth of data in a visual easy-to-assess format, and in real-time too.

This is a really tough design challenge …
… and it has just been solved.

Here are two recent case studies that describe how it was done using a robust systems engineering method.

Abstract

Abstract

System Dynamics

On Thursday we had a very enjoyable and educational day.  I say “we” because there were eleven of us learning together.

There was Declan, Chris, Lesley, Imran, Phil, Pete, Mike, Kate, Samar and Ellen and me (behind the camera).  Some are holding their long-overdue HCSE Level-1 Certificates and Badges that were awarded just before the photo was taken.

The theme for the day was System Dynamics which is a tried-and-tested approach for developing a deep understanding of how a complex adaptive system (CAS) actually works.  A health care system is a complex adaptive system.

The originator of system dynamics is Jay Wright Forrester who developed it around the end of WW2 (i.e. about 80 years ago) and who later moved to MIT.  Peter Senge, author of The Fifth Discipline was part of the same group as was Donella Meadows who wrote Limits to Growth.  Their dream was much bigger – global health – i.e. the whole planet not just the human passengers!  It is still a hot topic [pun intended].


The purpose of the day was to introduce the team of apprentice health care system engineers (HCSEs) to the principles of system dynamics and to some of its amazing visualisation and prediction techniques and tools.

The tangible output we wanted was an Excel-based simulation model that we could use to solve a notoriously persistent health care service management problem …

How to plan the number of new and review appointment slots needed to deliver a safe, efficient, effective and affordable chronic disease service?

So, with our purpose in mind, the problem clearly stated, and a blank design canvas we got stuck in; and we used the HCSE improvement-by-design framework that everyone was already familiar with.

We made lots of progress, learned lots of cool stuff, and had lots of fun.

We didn’t quite get to the final product but that was OK because it was a very tough design assignment.  We got 80% of the way there though which is pretty good in one day from a standing start.  The last 20% can now be done by the HCSEs themselves.

We were all exhausted at the end.  We had worked hard.  It was a good day.


And I am already looking forward to the next HCSE Masterclass that will be in about six weeks time.  This one will address another chronic, endemic, systemic health care system “disease” called carveoutosis multiforme fulminans.

From Push to Pull

One of the most frequent niggles that I hear from patients is the difficultly they have getting an appointment with their general practitioner.  I too have personal experience of the distress caused by the ubiquitous “Phone at 8AM for an Appointment” policy, so in June 2018 when I was approached to help a group of local practices redesign their appointment booking system I said “Yes, please!


What has emerged is a fascinating, enjoyable and rewarding journey of co-evolution of learning and co-production of an improved design.  The multi-skilled design team (MDT) we pulled together included general practitioners, receptionists and practice managers and my job was to show them how to use the health care systems engineering (HCSE) framework to diagnose, design, decide and deliver what they wanted: A safe, calm, efficient, high quality, value-4-money appointment booking service for their combined list of 50,000 patients.


This week they reached the start of the ‘decide and deliver‘ phase.  We have established the diagnosis of why the current booking system is not delivering what we all want (i.e. patients and practices), and we have assembled and verified the essential elements of an improved design.

And the most important outcome for me is that the Primary Care MDT now feel confident and capable to decide what and how to deliver it themselves.   That is what I call embedded capability and achieving it is always an emotional roller coaster ride that we call The Nerve Curve.

What we are dealing with here is called a complex adaptive system (CAS) which has two main components: Processes and People.  Both are complicated and behave in complex ways.  Both will adapt and co-evolve over time.  The processes are the result of the policies that the people produce.  The policies are the result of the experiences that the people have and the explanations that they create to make intuitive sense of them.

But, complex systems often behave in counter-intuitive ways, so our intuition can actually lead us to make unwise decisions that unintentionally perpetuate the problem we are trying to solve.  The name given to this is a wicked problem.

A health care systems engineer needs to be able to demonstrate where these hidden intuitive traps lurk, and to explain what causes them and how to avoid them.  That is the reason the diagnosis and design phase is always a bit of a bumpy ride – emotionally – our Inner Chimp does not like to be challenged!  We all resist change.  Fear of the unknown is hard-wired into us by millions of years of evolution.

But we know when we are making progress because the “ah ha” moments signal a slight shift of perception and a sudden new clarity of insight.  The cognitive fog clears a bit and a some more of the unfamiliar terrain ahead comes into view.  We are learning.

The Primary Care MDT have experienced many of these penny-drop moments over the last six months and unfortunately there is not space here to describe them all, but I can share one pivotal example.


A common symptom of a poorly designed process is a chronically chaotic queue.

[NB. In medicine the term chronic means “long standing”.  The opposite term is acute which means “recent onset”].

Many assume, intuitively, that the cause of a chronically chaotic queue is lack of capacity; hence the incessant calls for ‘more capacity’.  And it appears that we have learned this reflex response by observing the effect of adding capacity – which is that the queue and chaos abate (for a while).  So that proves that lack of capacity was the cause. Yes?

Well actually it doesn’t.  Proving causality requires a bit more work.  And to illustrate this “temporal association does not prove causality trap” I invite you to consider this scenario.

I have a headache => I take a paracetamol => my headache goes away => so the cause of my headache was lack of paracetamol. Yes?

Errr .. No!

There are many contributory causes of chronically chaotic queues and lack of capacity is not one of them because the queue is chronic.  What actually happens is that something else triggers the onset of chaos which then consumes the very resource we require to avoid the chaos.  And once we slip into this trap we cannot escape!  The chaos-perpretuating behaviour we observe is called fire-fighting and the necessary resource it consumes is called resilience.


Six months ago, the Primary Care MDT believed that the cause of their chronic appointment booking chaos was a mismatch between demand and capacity – i.e. too much patient demand for the appointment capacity available.  So, there was a very reasonable resistance to the idea of making the appointment booking process easier for patients – they justifiably feared being overwhelmed by a tsunami of unmet need!

Six months on, the Primary Care MDT understand what actually causes chronic queues and that awareness has been achieved by a step-by-step process of explanation and experimentation in the relative safety of the weekly design sessions.

We played simulation games – lots of them.

One particularly memorable “Ah Ha!” moment happened when we played the Carveout Game which is done using dice, tiddly-winks, paper and coloured-pens.  No computers.  No statistics.  No queue theory gobbledygook.  No smoke-and-mirrors.  No magic.

What the Carveout Game demonstrates, practically and visually, is that an easy way to trigger the transition from calm-efficiency to chaotic-ineffectiveness is … to impose a carveout policy on a system that has been designed to achieve optimum efficiency by using averages.  Boom!  We slip on the twin banana skins of the Flaw-of-Averages and Sub-Optimisation, slide off the performance cliff, and career down the rocky slope of Chronic Chaos into the Depths of Despair – from which we cannot then escape.

This visual demonstration was a cognitive turning point for the MDT.  They now believed that there is a rational science to improvement and from there we were on the step-by-step climb to building the necessary embedded capability.


It now felt like the team were pulling what they needed to know.  I was no longer pushing.  We had flipped from push-to-pull.  That is called the tipping point.

And that is how health care systems engineering (HCSE) works.


Health care is a complex adaptive system, and what a health care systems engineer actually “designs” is a context-sensitive  incubator that nurtures the seeds of innovation that already exist in the system and encourages them to germinate, grow and become strong enough to establish themselves.

That is called “embedded improvement-by-design capability“.

And each incubator needs to be different – because each system is different.  One-solution-fits-all-problems does not work here just as it does not in medicine.  Each patient is both similar and unique.


Just as in medicine, first we need to diagnose the actual, specific cause;  second we need to design some effective solutions; third we need to decide which design to implement and fourth we need to deliver it.

This how-to-do-it framework feels counter-intuitive.  If it was obvious we would already be doing it.  But the good news is that the evidence proves that it works and that anyone can learn how to do HCSE.

Seeing The Voice of the System

It is always a huge compliment to see an idea improved and implemented by inspired innovators.

Health care systems engineering (HCSE) brings together concepts from the separate domains of systems engineering and health care.  And one idea that emerged from this union is to regard the health care system as a living, evolving, adapting entity.

In medicine we have the concept of ‘vital signs’ … a small number of objective metrics that we can measure easily and quickly.  With these we can quickly assess the physical health of a patient and decide if we need to act, and when.

With a series of such measurements over time we can see the state of a patient changing … for better or worse … and we can use this to monitor the effect of our actions and to maintain the improvements we achieve.

For a patient, the five vital signs are conscious level, respiratory rate, pulse, blood pressure and temperature. To sustain life we must maintain many flows within healthy ranges and the most critically important is the flow of oxygen to every cell in the body.  Oxygen is carried by blood, so blood flow is critical.

So, what are the vital signs for a health care system where the flows are not oxygen and blood?  They are patients, staff, consumables, equipment, estate, data and cash.

The photograph shows a demonstration of a Vitals Dashboard for a part of the cancer care system in the ABMU health board in South Wales.  The inspirational innovators who created it are Imran Rao (left), Andy Jones (right) and Chris Jones (top left), and they are being supported by ABMU to do this as part of their HCSE training programme.

So well done guys … we cannot wait to hear how being better able to seeing the voice of your cancer system translates into improved care for patients, and improved working life for the dedicated NHS staff, and improved use of finite public resources.  Win-win-win.

The 85% Optimum Bed Occupancy Myth

A few years ago I had a rant about the dangers of the widely promoted mantra that 85% is the optimum average measured bed-occupancy target to aim for.

But ranting is annoying, ineffective and often counter-productive.

So, let us revisit this with some calm objectivity and disprove this Myth a step at a time.

The diagram shows the system of interest (SoI) where the blue box represents the beds, the coloured arrows are the patient flows, the white diamond is a decision and the dotted arrow is information about how full the hospital is (i.e. full/not full).

A new emergency arrives (red arrow) and needs to be admitted. If the hospital is not full the patient is moved to an empty bed (orange arrow), the medical magic happens, and some time later the patient is discharged (green arrow).  If there is no bed for the emergency request then we get “spillover” which is the grey arrow, i.e. the patient is diverted elsewhere (n.b. these are critically ill patients …. they cannot sit and wait).


This same diagram could represent patients trying to phone their GP practice for an appointment.  The blue box is the telephone exchange and if all the lines are busy then the call is dropped (grey arrow).  If there is a line free then the call is connected (orange arrow) and joins a queue (blue box) to be answered some time later (green arrow).

In 1917, a Danish mathematician/engineer called Agner Krarup Erlang was working for the Copenhagen Telephone Company and was grappling with this very problem: “How many telephone lines do we need to ensure that dropped calls are infrequent AND the switchboard operators are well utilised?

This is the perennial quality-versus-cost conundrum. The Value-4-Money challenge. Too few lines and the quality of the service falls; too many lines and the cost of the service rises.

Q: Is there a V4M ‘sweet spot” and if so, how do we find it? Trial and error?

The good news is that Erlang solved the problem … mathematically … and the not-so good news is that his equations are very scary to a non mathematician/engineer!  So this solution is not much help to anyone else.


Fortunately, we have a tool for turning scary-equations into easy-2-see-pictures; our trusty Excel spreadsheet. So, here is a picture called a heat-map, and it was generated from one of Erlang’s equations using Excel.

The Erlang equation is lurking in the background, safely out of sight.  It takes two inputs and gives one output.

The first input is the Capacity, which is shown across the top, and it represents the number of beds available each day (known as the space-capacity).

The second input is the Load (or offered load to use the precise term) which is down the left side, and is the number of bed-days required per day (e.g. if we have an average of 10 referrals per day each of whom would require an average 2-day stay then we have an average of 10 x 2 = 20 bed-days of offered load per day).

The output of the Erlang model is the probability that a new arrival finds all the beds are full and the request for a bed fails (i.e. like a dropped telephone call).  This average probability is displayed in the cell.  The colour varies between red (100% failure) and green (0% failure), with an infinite number of shades of red-yellow-green in between.

We can now use our visual heat-map in a number of ways.

a) We can use it to predict the average likelihood of rejection given any combination of bed-capacity and average offered load.

Suppose the average offered load is 20 bed-days per day and we have 20 beds then the heat-map says that we will reject 16% of requests … on average (bottom left cell).  But how can that be? Why do we reject any? We have enough beds on average! It is because of variation. Requests do not arrive in a constant stream equal to the average; there is random variation around that average.  Critically ill patients do not arrive at hospital in a constant stream; so our system needs some resilience and if it does not have it then failures are inevitable and mathematically predictable.

b) We can use it to predict how many beds we need to keep the average rejection rate below an arbitrary but acceptable threshold (i.e. the quality specification).

Suppose the average offered load is 20 bed-days per day, and we want to have a bed available more than 95% of the time (less than 5% failures) then we will need at least 25 beds (bottom right cell).

c) We can use it to estimate the maximum average offered load for a given bed-capacity and required minimum service quality.

Suppose we have 22 beds and we want a quality of >=95% (failure <5%) then we would need to keep the average offered load below 17 bed-days per day (i.e. by modifying the demand and the length of stay because average load = average demand * average length of stay).


There is a further complication we need to be mindful of though … the measured utilisation of the beds is related to the successful admissions (orange arrow in the first diagram) not to the demand (red arrow).  We can illustrate this with a complementary heat map generated in Excel.

For scenario (a) above we have an offered load of 20 bed-days per day, and we have 20 beds but we will reject 16% of requests so the accepted bed load is only 16.8 bed days per day  (i.e. (100%-16%) * 20) which is the reason that the average  utilisation is only 16.8/20 = 84% (bottom left cell).

For scenario (b) we have an offered load of 20 bed-days per day, and 25 beds and will only reject 5% of requests but the average measured utilisation is not 95%, it is only 76% because we have more beds (the accepted bed load is 95% * 20 = 19 bed-days per day and 19/25 = 76%).

For scenario (c) the average measured utilisation would be about 74%.


So, now we see the problem more clearly … if we blindly aim for an average, measured, bed-utilisation of 85% with the untested belief that it is always the optimum … this heat-map says it is impossible to achieve and at the same time offer an acceptable quality (>95%).

We are trading safety for money and that is not an acceptable solution in a health care system.


So where did this “magic” value of 85% come from?

From the same heat-map perhaps?

If we search for the combination of >95% success (<5% fail) and 85% average bed-utilisation then we find it at the point where the offered load reaches 50 bed-days per day and we have a bed-capacity of 56 beds.

And if we search for the combination of >99% success (<1% fail) and 85% average utilisation then we find it with an average offered load of just over 100 bed-days per day and a bed-capacity around 130 beds.

H’mm.  “Houston, we have a problem“.


So, even in this simplified scenario the hypothesis that an 85% average bed-occupancy is a global optimum is disproved.

The reality is that the average bed-occupancy associated with delivering the required quality for a given offered load with a specific number of beds is almost never 85%.  It can range anywhere between 50% and 100%.  Erlang knew that in 1917.


So, if a one-size-fits-all optimum measured average bed-occupancy assumption is not valid then how might we work out how many beds we need and predict what the expected average occupancy will be?

We would design the fit-4-purpose solution for each specific context …
… and to do that we need to learn the skills of complex adaptive system design …
… and that is part of the health care systems engineering (HCSE) skill-set.

 

The Strangeness of LoS

It had been some time since Bob and Leslie had chatted so an email from the blue was a welcome distraction from a complex data analysis task.

<Bob> Hi Leslie, great to hear from you. I was beginning to think you had lost interest in health care improvement-by-design.

<Leslie> Hi Bob, not at all.  Rather the opposite.  I’ve been very busy using everything that I’ve learned so far.  It’s applications are endless, but I have hit a problem that I have been unable to solve, and it is driving me nuts!

<Bob> OK. That sounds encouraging and interesting.  Would you be able to outline this thorny problem and I will help if I can.

<Leslie> Thanks Bob.  It relates to a big issue that my organisation is stuck with – managing urgent admissions.  The problem is that very often there is no bed available, but there is no predictability to that.  It feels like a lottery; a quality and safety lottery.  The clinicians are clamoring for “more beds” but the commissioners are saying “there is no more money“.  So the focus has turned to reducing length of stay.

<Bob> OK.  A focus on length of stay sounds reasonable.  Reducing that can free up enough beds to provide the necessary space-capacity resilience to dramatically improve the service quality.  So long as you don’t then close all the “empty” beds to save money, or fall into the trap of believing that 85% average bed occupancy is the “optimum”.

<Leslie> Yes, I know.  We have explored all of these topics before.  That is not the problem.

<Bob> OK. What is the problem?

<Leslie> The problem is demonstrating objectively that the length-of-stay reduction experiments are having a beneficial impact.  The data seems to say they they are, and the senior managers are trumpeting the success, but the people on the ground say they are not. We have hit a stalemate.


<Bob> Ah ha!  That old chestnut.  So, can I first ask what happens to the patients who cannot get a bed urgently?

<Leslie> Good question.  We have mapped and measured that.  What happens is the most urgent admission failures spill over to commercial service providers, who charge a fee-per-case and we have no choice but to pay it.  The Director of Finance is going mental!  The less urgent admission failures just wait on queue-in-the-community until a bed becomes available.  They are the ones who are complaining the most, so the Director of Governance is also going mental.  The Director of Operations is caught in the cross-fire and the Chief Executive and Chair are doing their best to calm frayed tempers and to referee the increasingly toxic arguments.

<Bob> OK.  I can see why a “Reduce Length of Stay Initiative” would tick everyone’s Nice If box.  So, the data analysts are saying “the length of stay has come down since the Initiative was launched” but the teams on the ground are saying “it feels the same to us … the beds are still full and we still cannot admit patients“.

<Leslie> Yes, that is exactly it.  And everyone has come to the conclusion that demand must have increased so it is pointless to attempt to reduce length of stay because when we do that it just sucks in more work.  They are feeling increasingly helpless and hopeless.

<Bob> OK.  Well, the “chronic backlog of unmet need” issue is certainly possible, but your data will show if admissions have gone up.

<Leslie> I know, and as far as I can see they have not.

<Bob> OK.  So I’m guessing that the next explanation is that “the data is wonky“.

<Leslie> Yup.  Spot on.  So, to counter that the Information Department has embarked on a massive push on data collection and quality control and they are adamant that the data is complete and clean.

<Bob> OK.  So what is your diagnosis?

<Leslie> I don’t have one, that’s why I emailed you.  I’m stuck.


<Bob> OK.  We need a diagnosis, and that means we need to take a “history” and “examine” the process.  Can you tell me the outline of the RLoS Initiative.

<Leslie> We knew that we would need a baseline to measure from so we got the historical admission and discharge data and plotted a Diagnostic Vitals Chart®.  I have learned something from my HCSE training!  Then we planned the implementation of a visual feedback tool that would show ward staff which patients were delayed so that they could focus on “unblocking” the bottlenecks.  We then planned to measure the impact of the intervention for three months, and then we planned to compare the average length of stay before and after the RLoS Intervention with a big enough data set to give us an accurate estimate of the averages.  The data showed a very obvious improvement, a highly statistically significant one.

<Bob> OK.  It sounds like you have avoided the usual trap of just relying on subjective feedback, and now have a different problem because your objective and subjective feedback are in disagreement.

<Leslie> Yes.  And I have to say, getting stuck like this has rather dented my confidence.

<Bob> Fear not Leslie.  I said this is an “old chestnut” and I can say with 100% confidence that you already have what you need in your T4 kit bag?

<Leslie>Tee-Four?

<Bob> Sorry, a new abbreviation. It stands for “theory, techniques, tools and training“.

<Leslie> Phew!  That is very reassuring to hear, but it does not tell me what to do next.

<Bob> You are an engineer now Leslie, so you need to don the hard-hat of Improvement-by-Design.  Start with your Needs Analysis.


<Leslie> OK.  I need a trustworthy tool that will tell me if the planned intervention has has a significant impact on length of stay, for better or worse or not at all.  And I need it to tell me that quickly so I can decide what to do next.

<Bob> Good.  Now list all the things that you currently have that you feel you can trust.

<Leslie> I do actually trust that the Information team collect, store, verify and clean the raw data – they are really passionate about it.  And I do trust that the front line teams are giving accurate subjective feedback – I work with them and they are just as passionate.  And I do trust the systems engineering “T4” kit bag – it has proven itself again-and-again.

<Bob> Good, and I say that because you have everything you need to solve this, and it sounds like the data analysis part of the process is a good place to focus.

<Leslie> That was my conclusion too.  And I have looked at the process, and I can’t see a flaw. It is driving me nuts!

<Bob> OK.  Let us take a different tack.  Have you thought about designing the tool you need from scratch?

<Leslie> No. I’ve been using the ones I already have, and assume that I must be using them incorrectly, but I can’t see where I’m going wrong.

<Bob> Ah!  Then, I think it would be a good idea to run each of your tools through a verification test and check that they are fit-4-purpose in this specific context.

<Leslie> OK. That sounds like something I haven’t covered before.

<Bob> I know.  Designing verification test-rigs is part of the Level 2 training.  I think you have demonstrated that you are ready to take the next step up the HCSE learning curve.

<Leslie> Do you mean I can learn how to design and build my own tools?  Special tools for specific tasks?

<Bob> Yup.  All the techniques and tools that you are using now had to be specified, designed, built, verified, and validated. That is why you can trust them to be fit-4-purpose.

<Leslie> Wooohooo! I knew it was a good idea to give you a call.  Let’s get started.


[Postscript] And Leslie, together with the other stakeholders, went on to design the tool that they needed and to use the available data to dissolve the stalemate.  And once everyone was on the same page again they were able to work collaboratively to resolve the flow problems, and to improve the safety, flow, quality and affordability of their service.  Oh, and to know for sure that they had improved it.

The Turkeys Voting For Xmas Trap

One of the quickest and easiest ways to kill an improvement initiative stone dead is to label it as a “cost improvement program” or C.I.P.

Everyone knows that the biggest single contributor to cost is salaries.

So cost reduction means head count reduction which mean people lose their jobs and their livelihood.

Who is going to sign up to that?

It would be like turkeys voting for Xmas.

There must be a better approach?

Yes. There is.


Over the last few weeks, groups of curious skeptics have experienced the immediate impact of systems engineering theory, techniques and tools in a health care context.

They experienced queues, delays and chaos evaporate in front of their eyes … and it cost nothing to achieve. No extra resources. No extra capacity. No extra cash.

Their reaction was “surprise and delight”.

But … it also exposed a problem.  An undiscussable problem.


Queues and chaos require expensive resources to manage.

We call them triagers, progress-chasers, and fire-fighters.  And when the queues and chaos evaporate then their jobs do too.

The problem is that the very people who are needed to make the change happen are the ones who become surplus-to-requirement as a result of the change.

So change does not happen.

It would like turkeys voting for Xmas.


The way around this impasse is to anticipate the effect and to proactively plan to re-invest the resource that is released.  And to re-invest it doing a more interesting and more worthwhile jobs than queue-and-chaos management.

One opportunity for re-investment is called time-buffering which is an effective way to improve resilience to variation, especially in an unscheduled care context.

Another opportunity for re-investment is tail-gunning the chronic backlogs until they are down to a safe and sensible size.

And many complain that they do not have time to learn about improvement because they are too busy managing the current chaos.

So, another opportunity for re-investment is training – oneself first and then others.


R.I.P.    C.I.P.

The Disbelief to Belief Transition

The NHS appears to be descending in a frenzy of fear as the winter looms and everyone says it will be worse than last and the one before that.

And with that we-are-going-to-fail mindset, it almost certainly will.

Athletes do not start a race believing that they are doomed to fail … they hold a belief that they can win the race and that they will learn and improve even if they do not. It is a win-win mindset.

But to succeed in sport requires more than just a positive attitude.

It also requires skills, training, practice and experience.

The same is true in healthcare improvement.


That is not the barrier though … the barrier is disbelief.

And that comes from not having experienced what it is like to take a system that is failing and transform it into one that is succeeding.

Logically, rationally, enjoyably and surprisingly quickly.

And, the widespread disbelief that it is possible is paradoxical because there are plenty of examples where others have done exactly that.

The disbelief seems to be “I do not believe that will work in my world and in my hands!

And the only way to dismantle that barrier-of-disbelief is … by doing it.


How do we do that?

The emotionally safest way is in a context that is carefully designed to enable us to surface the unconscious assumptions that are the bricks in our individual Barriers of Disbelief.

And to discard the ones that do not pass a Reality Check, and keep the ones that are OK.

This Disbelief-Busting design has been proven to be effective, as evidenced by the growing number of individuals who are learning how to do it themselves, and how to inspire, teach and coach others to as well.


So, if you would like to flip disbelief-and-hopeless into belief-and-hope … then the door is here.

The Awareness Ability Gap

It is always rewarding when separate but related ideas come together and go “click”.

And this week I had one of those “ah ha” moments while attempting to explain how the process of engagement works.

Many years ago I was introduced to the conscious-competence model of learning which I found really insightful.  Sometime later I renamed it as the awareness-ability model because the term “incompetent” felt too judgemental.

The idea is that when we learn, we all start from a position of being unaware of our inability.  We don’t know what we don’t know.

This state is called blissful ignorance.

And it is only when we try to do something that we become aware of what we cannot do; which can lead to temper tantrums!

As we ask, listen, reflect, learn, and practice our ability improves and we enter the zone of Know How.  We become able to demonstrate what we can do, and explain how we are doing it.

The Zone of Known Known.

The final phase comes when our ability becomes so habitual that we forget how we achieve our skill – it has become so intuitive and second nature.


Some years later I was introduced to the Nerve Curve which is the emotional roller-coaster ride that accompanies change.  Any form of change.

The multi-step model was described in the context of bereavement by psychiatrist Elisabeth Kübler-Ross in her 1969 book “On Death & Dying: What the Dying Have to Teach Doctors, Nurses, Clergy and their Families.

More recently this grief reaction has been extended and applied by authors such as William Bridges and John Fisher in the less emotionally traumatic contexts called transitions.

The characteristic sequence of emotions are triggered by external events are:

  • shock
  • denial
  • frustration
  • blame
  • guilt
  • depression
  • acceptance
  • engagement
  • excitement.

The important messages in both of these models is that (a) this is a normal and expected process and (b) we can get stuck along the path of transition.  We can disengage at several points, signalling to others that we have come off the track.  When we do that we exhibit behaviours such as denial, disillusionment and hostility.


More recently I was introduced to the work of the late Chris Argyris and specifically the concept of “defensive reasoning“.

The essence of the concept:  As we start to become aware of a gap between our intentions and our impact, then we feel threatened and our natural emotional reaction is defensive.  This is the essence of the behaviour called “resistance to change”, and it is interesting to note that “smart” people are particularly adept at it.


These three concepts are clearly related in some way.   But how?


As a systems engineer I am used to cyclical processes and the concepts of wavelength, amplitude, phase and offset, and I found myself looking at the Awareness-Ability cycle and asking:

“How could that cycle generate the characteristic shape of the transition curve?”

Then the Argyris idea of the gap between intent and impact popped up and triggered another question:

“What if we look at the gap between our ability and our awareness?”

So, I conducted a thought experiment and imagined myself going around the cycle – and charting my ability, awareness and emotional state along the way … and this sketch emerged. Ah ha!

When my awareness exceeded my ability I felt disheartened. That is the defensive reasoning that Chris Argyris talks about, the emotional barrier to self-improvement.

But that sense is, paradoxically, associated with the steepest part of the learning curve.  It is almost as it there is a piece of emotional elastic linking the blue and green lines and how we feel is related to how much it is being stretched and in what direction.


This insight suggested to me that the process of building self-engagement requires opening the ability-versus-awareness gap a little-bit-at-a-time, then sensing the emotional discomfort, and then actively releasing the tension by learning a new concept, principle, technique or tool (and usually all four).  That makes sense.

Evidence-Based Co-Design

The first step in a design conversation is to understand the needs of the customer.

It does not matter if you are designing a new kitchen, bathroom, garden, house, widget, process, or system.  It is called a “needs analysis”.

Notice that it is not called a “wants analysis”.  They are not the same thing because there is often a gap between what we want (and do not want) and what we need (and do not need).

The same is true when we are looking to use a design-based approach to improve something that we already have.


This is especially true when we are improving services because the the needs and wants of a service tend to drift and shift continuously, and we are in a continual state of improvement.

For design to work the “customers” and the “suppliers” need work collaboratively to ensure that they both get what they need.

Frustration and fragmentation are the symptoms of a combative approach where a “win” for one is a “lose” for the other (NB. In absolute terms both will end up worse off than they started so both lose in the long term.)


And there is a tried and tested process to collaborative improvement-by-design.

One version is called “experience based co-design” (EBCD) and it was cooked up in a health care context about 20 years ago and shown to work in a few small pilot studies.

The “experience” that triggered the projects was almost always a negative one and was associated with feelings of frustration, anxiety and disappointment. So, the EBCD case studies were more focused on helping the protagonists to share their perspectives, in the belief that will be enough to solve the problem.  And it is indeed a big step forwards.

It has a limitation though.  It assumes that the staff and patients know how to design processes so that they are fit-4-purpose, and the evidence to support that assumption is scanty.

In one pilot in mental health, the initial improvement (a fall in patient and carer complaints) was not sustained.  The reason given was that the staff who were involved in the pilot inevitably moved on, and as they did the old attitudes, beliefs and behaviours returned.


So, an improved version of EBCD is needed.  One that is based on hard evidence of what works and what does not.  One that is also focused on moving towards a future-purpose rather than just moving away from past-problems.

Let us call this improved version “Evidence-Based Co-Design“.

And we already know that by a different name:

Health Care Systems Engineering (HCSE).

The Rise And Fall of Quality Improvement

“Those who cannot remember the past are condemned to repeat it”.

Aphorism by George Santayana, philosopher (1863-1952).

And the history of quality improvement (QI) is worth reflecting on, because there is massive pressure to grow QI capability in health care as a way of solving some chronic problems.

The chart below is a Google Ngram, it was generated using some phrases from the history of Quality Improvement:

TQM = the total quality management movement that grew from the work of Walter Shewhart in the 1920’s and 30’s and was “incubated” in Japan after being transplanted there by Shewhart’s student W. Edwards Deming in the 1950’s.
ISO 9001 = an international quality standard first published in 2000 that developed from the British Standards Institute (BSI) in the 1970’s via ISO 9000 that was first published in 1987.
Six Sigma = a highly statistical quality improvement / variation reduction methodology that originated in the rapidly expanding semiconductor industry in the 1980’s.

The rise-and-fall pattern is characteristic of how innovations spread; there is a long lag phase, then a short accelerating growth phase, then a variable plateau phase and then a long, decelerating decline phase.

It is called a life-cycle. It is how complex adaptive systems behave. It is how innovations spread. It is expected.

So what happened?

Did the rise of TQM lead to the rise of ISO 9000 which triggered the development of the Six Sigma methodology?

It certainly looks that way.

So why is Six Sigma “dying”?  Or is it just being replaced by something else?


This is the corresponding Ngram for “Healthcare Quality Improvement” which seems to sit on the timeline in about the same place as ISO 9001 and that suggests that it was triggered by the TQM movement. 

The Institute of Healthcare Improvement (IHI) was officially founded in 1991 by Dr Don Berwick, some years after he attended one of the Deming 4-day workshops and had an “epiphany”.

Don describes his personal experience in a recent plenary lecture (from time 01:07).  The whole lecture is worth watching because it describes the core concepts and principles that underpin QI.


So given the fact that safety and quality are still very big issues in health care – why does the Ngram above suggest that the use of the term Quality Improvement does not sustain?

Will that happen in healthcare too?

Could it be that there is more to improvement than just a focus on safety (reducing avoidable harm) and quality (improving patient experience)?

Could it be that flow and productivity are also important?

The growing angst that permeates the NHS appears to be more focused on budgets and waiting-time targets (4 hrs in A&E, 63 days for cancer, 18 weeks for scheduled care, etc.).

Mortality and Quality hardly get a mention any more, and the nationally failed waiting time targets are being quietly dropped.

Is it too politically embarrassing?

Has the NHS given up because it firmly believes that pumping in even more money is the only solution, and there isn’t any more in the tax pot?


This week another small band of brave innovators experienced, first-hand, the application of health care systems engineering (HCSE) to a very common safety, flow, quality and productivity problem …

… a chronically chaotic clinic characterized by queues and constant calls for more capacity and cash.

They discovered that the queues, delays and chaos (i.e. a low quality experience) were not caused by lack of resources; they were caused by flow design.  They were iatrogenic.  And when they applied the well-known concepts and principles of scheduling design, they saw the queues and chaos evaporate, and they measured a productivity increase of over 60%.

OMG!

Improvement science is more than just about safety and quality, it is about flow and productivity as well; because we all need all four to improve at the same time.

And yes we need all the elements of Deming’s System of Profound Knowledge (SoPK), but need more than that.  We need to harness the knowledge of the engineers who for centuries have designed and built buildings, bridges, canals, steam engines, factories, generators, telephones, automobiles, aeroplanes, computers, rockets, satellites, space-ships and so on.

We need to revisit the legacy of the engineers like Watt, Brunel, Taylor, Gantt, Erlang, Ford, Forrester and many, many others.

Because it does appear to be possible to improve-by-design as well as to improve-by-desire.

Here is the Ngram with “Systems Engineering” (SE) added and the time line extended back to 1955.  Note the rise of SE in the 1950’s and 1960’s and note that it has sustained.

That pattern of adoption only happens when something is proven to be fit-4-purpose, and is valued and is respected and is promoted and is taught.

What opportunity does systems engineering offer health care?

That question is being actively explored … here.

One Step Back; Two Steps Forward.

This week a ground-breaking case study was published.

It describes how a team in South Wales discovered how to make the flows visible in a critical part of their cancer pathway.

Radiology.

And they did that by unintentionally falling into a trap!  A trap that many who set out to improve health care services fall into.  But they did not give up.  They sought guidance and learned some profound lessons.

Part 1 of their story is shared here.


One lesson they learned is that, as they take on more complex improvement challenges, they need to be equipped with the right tools, and they need to be trained to use them, and they need to have practiced using them.

Another lesson they learned is that making the flows in a system visible is necessary before the current behaviour of the system can be understood.

And they learned that they needed a clear diagnosis of how the current system is not performing; before they can attempt to design an intervention to deliver the intended improvement.

They learned how the Study-Plan-Do cycle works, and they learned the reason it starts with “Study”, and not with “Plan”.


They tried, failed, took one step back, asked, listened and learned.


Then with their new knowledge, more advanced tools, and deeper understanding they took two steps forward; diagnosed problem, designed an intervention, and delivered a significant improvement.

And visualised just how significant.

Then they shared Part 2 of their story … here.

 

 

The OMG Effect … Revisited

Beliefs drive behaviour. Behaviour drives change. Improvement requires change.

So, improvement requires challenging beliefs; confirming some and disproving others.

And beliefs can only be confirmed or disproved rationally – with evidence and explanation. Rhetoric is too slippery. We can convince ourselves of anything with that!

So it comes as an emotional shock when one of our beliefs is disproved by experiencing reality from a new perspective.

Our natural reaction is surprise, perhaps delight, and then defense. We say “Yes, but ...”.

And that is healthy skepticism and it is a valuable and necessary part of the change and improvement process.

If there are not enough healthy skeptics on a design team it is unbalanced.

If there are too many healthy skeptics on a design team it is unbalanced.


This week I experienced this phenomenon first hand.

The context was a one day practical skills workshop and the topic was:

How to improve the safety, timeliness, quality and affordability of unscheduled care“.

The workshop is designed to approach this challenge from a different perspective.

Instead of asking “What is the problem and how do we solve it?” we took the system engineering approach of asking “What is the purpose and how can we achieve it?”

We used a range of practical exercises to illustrate some core concepts and principles – reality was our teacher. Then we applied those newly acquired insights to the design challenge using a proven methodology that ensured we do not skip steps.


And the outcome was: the participants discovered that …

it is indeed possible to improve the safety, timeliness, quality and affordability of unscheduled health care …

using health care systems engineering concepts, principles, techniques and tools that, until the workshop, they had been unaware even existed.


Their reaction was “OMG” and was shortly followed by “Yes, but …” which is to be expected and is healthy.

The rest of the “Yes, but … ” sentence was “… how will I convince my colleagues?

One way is for them to seek out the same experience …

… because reality is a much better teacher than rhetoric.

HCSE Practical Skills One Day Workshops

 

Simulation Stimulation

One of the most effective ways to inspire others is to demonstrate what is possible, and then to explain how it is possible.

And one way to do that is to use a simulation game.

There are many different forms of simulation game from the imagination playground games we remember as children, to sophisticated and highly realistic computer simulations.

The purpose is the same: to have the experience without the risk and cost of doing it for real; to learn from the experience; and to increase our chance of success in the real world.


Simulations are very effective educational tools because we can simplify, focus, practice, pause, rewind, and reflect.

They are also very effective exploration tools for developing our understanding of hows things work.  We need to know that before we can make things work better.


And anyone who has tried it will confirm: creating an effective and enjoyable simulation game is not easy. It takes passion, persistence and practice and many iterations to get it right.

And that in itself is a powerful learning experience.


This week the topic of simulations has cropped up several times.

Firstly, the hands-on simulations at the Flow Design Practical Skills Workshop and how they generated insight and inspiration.  The experience certainly fired imaginations and will hopefully lead to innovations. For more click here …

Secondly, the computer simulation called the “Save The NHS Game” which is designed to illustrate the complex and counter-intuitive behaviour of real systems.  The rookie crew “crashed” the simulated healthcare system, but that was OK, it was just a simulation.  In the process they learned a lot about how not to improve NHS productivity. For more click here …

And later the same day being a crash-test dummy for an innovative table-top simulation game using different sizes and shapes of pasta and an ice tray to illustrate the confusing concept of carve-out!  For more click here …

And finally, a fantastic conversation with Dr Bryn Baxendale from the Trent Simulation Centre about how simulation training has become a growing part of how we train individuals and teams, especially in clinical skills, safety and human factors.


In health care systems engineering we use simulation tools in the diagnosis, design and delivery phases of complex improvement-by-design projects. So learning how to design, build and verify the simulation tools we need is a core part advanced HCSE training.  For more click here …

Lots of simulation sTimulation. What a great week!

Eating the Elephant in the Room

The Elephant in the Room is an English-language metaphorical idiom for an obvious problem or risk no one wants to discuss.

An undiscussable topic.

And the undiscussability is also undiscussable.

So the problem or risk persists.

And people come to harm as a result.

Which is not the intended outcome.

So why do we behave this way?

Perhaps it is because the problem looks too big and too complicated to solve in one intuitive leap, and we give up and label it a “wicked problem”.


The well known quote “When eating an elephant take one bite at a time” is attributed to Creighton Abrams, a US Chief of Staff.


It says that even seemingly “impossible” problems can be solved so long as we proceed slowly and carefully, in small steps, learning as we go.

And the continued decline of the NHS UK Unscheduled Care performance seems to be an Elephant-in-the-Room problem, as shown by the monthly A&E 4-hour performance over the last 10 years and the fact that this chart is not published by the NHS.

Red = England, Brown=Wales, Grey=N.Ireland, Purple=Scotland.


This week I experienced a bite of this Elephant being taken and chewed on.

The context was a Flow Design – Practical Skills – One Day Workshop and the design challenge posed to the eager delegates was to improve the quality and efficiency of a one stop clinic.

A seemingly impossible task because the delegates reported that the queues, delays and chaos that they experienced in the simulated clinic felt very realistic.

Which means that this experience is accepted as inevitable, and is impossible to improve without more resources, but financial cuts prevent that, so we have to accept the waits.


At the end of the day their belief had been shattered.

The queues, delays and chaos had evaporated and the cost to run the new one stop clinic design was actually less than the old one.

And when we combined the quality metrics with the cost metrics and calculated the measured improvement in productivity; the answer was over 70%!

The delegates experienced it all first-hand. They did the diagnosis, design, and delivery using no more than squared-paper and squeaky-pen.

And at the end they were looking at a glaring mismatch between their rhetoric and the reality.

The “impossible to improve without more money” hypothesis lay in tatters – it had been rationally, empirically and scientifically disproved.

I’d call that quite a big bite out of the Elephant-in-the-Room.


So if you have a healthy appetite for Elephant-in-the-Room challenges, and are not afraid to try something different, then there is a whole menu of nutritious food-for-thought at a FISH&CHIPs® practical skills workshop.

Unknown-Knowns

This is the now-infamous statement that Donald Rumsfeld made at a Pentagon Press Conference which triggered some good-natured jesting from the assembled journalists.

But there is a problem with it.

There is a fourth combination that he does not mention: the Unknown-Knowns.

Which is a shame because they are actually the most important because they cause the most problems.  Avoidable problems.


Suppose there is a piece of knowledge that someone knows but that someone else does not; then we have an unknown-known.

None of us know everything and we do not need to, because knowledge that is of no value to us is irrelevant for us.

But what happens when the unknown-known is of value to us, and more than that; what happens when it would be reasonable for someone else to expect us to know it; because it is our job to know.


A surgeon would be not expected to know a lot about astronomy, but they would be expected to know a lot about anatomy.


So, what happens if we become aware that we are missing an important piece of knowledge that is actually already known?  What is our normal human reaction to that discovery?

Typically, our first reaction is fear-driven and we express defensive behaviour.  This is because we fear the potential loss-of-face from being exposed as inept.

From this sudden shock we then enter a characteristic emotional pattern which is called the Nerve Curve.

After the shock of discovery we quickly flip into denial and, if that does not work then to anger (i.e. blame).  We ignore the message and if that does not work we shoot the messenger.


And when in this emotionally charged state, our rationality tends to take a back seat.  So, if we want to benefit from the discovery of an unknown-known, then we have to learn to bite-our-lip, wait, let the red mist dissipate, and then re-examine the available evidence with a cool, curious, open mind.  A state of mind that is receptive and open to learning.


Recently, I was reminded of this.


The context is health care improvement, and I was using a systems engineering framework to conduct some diagnostic data analysis.

My first task was to run a data-completeness-verification-test … and the data I had been sent did not pass the test.  There was some missing.  It was an error of omission (EOO) and they are the hardest ones to spot.  Hence the need for the verification test.

The cause of the EOO was an unknown-known in the department that holds the keys to the data warehouse.  And I have come across this EOO before, so I was not surprised.

Hence the need for the verification test.

I was not annoyed either.  I just fed back the results of the test, explained what the issue was, explained the cause, and they listened and learned.


The implication of this specific EOO is quite profound though because it appears to be ubiquitous across the NHS.

To be specific it relates to the precise details of how raw data on demand, activity, length of stay and bed occupancy is extracted from the NHS data warehouses.

So it is rather relevant to just about everything the NHS does!

And the error-of-omission leads to confusion at best; and at worst … to the following sequence … incomplete data =>  invalid analysis => incorrect conclusion => poor decision => counter-productive action => unintended outcome.

Does that sound at all familiar?


So, if would you like to learn about this valuable unknown-known is then I recommend the narrative by Dr Kate Silvester, an internationally recognised expert in healthcare improvement.  In it, Kate re-tells the story of her emotional roller-coaster ride when she discovered she was making the same error.


Here is the link to the full abstract and where you can download and read the full text of Kate’s excellent essay, and help to make it a known-known.

That is what system-wide improvement requires – sharing the knowledge.

Catch-22

There is a Catch-22 in health care improvement and it goes a bit like this:

Most people are too busy fire-fighting the chronic chaos to have time to learn how to prevent the chaos, so they are stuck.

There is a deeper Catch-22 as well though:

The first step in preventing chaos is to diagnose the root cause and doing that requires experience, and we don’t have that experience available, and we are too busy fire-fighting to develop it.


Health care is improvement science in action – improving the physical and psychological health of those who seek our help. Patients.

And we have a tried-and-tested process for doing it.

First we study the problem to arrive at a diagnosis; then we design alternative plans to achieve our intended outcome and we decide which plan to go with; and then we deliver the plan.

Study ==> Plan ==> Do.

Diagnose  ==> Design & Decide ==> Deliver.

But here is the catch. The most difficult step is the first one, diagnosis, because there are many different illnesses and they often present with very similar patterns of symptoms and signs. It is not easy.

And if we make a poor diagnosis then all the action plans that follow will be flawed and may lead to disappointment and even harm.

Complaints and litigation follow in the wake of poor diagnostic ability.

So what do we do?

We defer reassuring our patients, we play safe, we request more tests and we refer for second opinions from specialists. Just to be on the safe side.

These understandable tactics take time, cost money and are not 100% reliable.  Diagnostic tests are usually precisely focused to answer specific questions but can have false positive and false negative results.

To request a broad batch of tests in the hope that the answer will appear like a rabbit out of a magician’s hat is … mediocre medicine.


This diagnostic dilemma arises everywhere: in primary care and in secondary care, and in non-urgent and urgent pathways.

And it generates extra demand, more work, bigger queues, longer delays, growing chaos, and mounting frustration, disappointment, anxiety and cost.

The solution is obvious but seemingly impossible: to ensure the most experienced diagnostician is available to be consulted at the start of the process.

But that must be impossible because if the consultants were seeing the patients first, what would everyone else do?  How would they learn to become more expert diagnosticians? And would we have enough consultants?


When I was a junior surgeon I had the great privilege to have the opportunity to learn from wise and experienced senior surgeons, who had seen it, and done it and could teach it.

Mike Thompson is one of these.  He is a general surgeon with a special interest in the diagnosis and treatment of bowel cancer.  And he has a particular passion for improving the speed and accuracy of the diagnosis step; because it can be a life-saver.

Mike is also a disruptive innovator and an early pioneer of the use of endoscopy in the outpatient clinic.  It is called point-of-care testing nowadays, but in the 1980’s it was a radically innovative thing to do.

He also pioneered collecting the symptoms and signs from every patient he saw, in a standard way using a multi-part printed proforma. And he invested many hours entering the raw data into a computer database.

He also did something that even now most clinicians do not do; when he knew the outcome for each patient he entered that into his database too – so that he could link first presentation with final diagnosis.


Mike knew that I had an interest in computer-aided diagnosis, which was a hot topic in the early 1980’s, and also that I did not warm to the Bayesian statistical models that underpinned it.  To me they made too many simplifying assumptions.

The human body is a complex adaptive system. It defies simplification.

Mike and I took a different approach.  We  just counted how many of each diagnostic group were associated with each pattern of presenting symptoms and signs.

The problem was that even his database of 8000+ patients was not big enough! This is why others had resorted to using statistical simplifications.

So we used the approach that an experienced diagnostician uses.  We used the information we had already gleaned from a patient to decide which question to ask next, and then the next one and so on.


And we always have three pieces of information at the start – the patient’s age, gender and presenting symptom.

What surprised and delighted us was how easy it was to use the database to help us do this for the new patients presenting to his clinic; the ones who were worried that they might have bowel cancer.

And what surprised us even more was how few questions we needed to ask arrive at a statistically robust decision to reassure-or-refer for further tests.

So one weekend, I wrote a little computer program that used the data from Mike’s database and our simple bean-counting algorithm to automate this process.  And the results were amazing.  Suddenly we had a simple and reliable way of using past experience to support our present decisions – without any statistical smoke-and-mirror simplifications getting in the way.

The computer program did not make the diagnosis, we were still responsible for that; all it did was provide us with reliable access to a clear and comprehensive digital memory of past experience.


What it then enabled us to do was to learn more quickly by exploring the complex patterns of symptoms, signs and outcomes and to develop our own diagnostic “rules of thumb”.

We learned in hours what it would take decades of experience to uncover. This was hot stuff, and when I presented our findings at the Royal Society of Medicine the audience was also surprised and delighted (and it was awarded the John of Arderne Medal).

So, we called it the Hot Learning System, and years later I updated it with Mike’s much bigger database (29,000+ records) and created a basic web-based version of the first step – age, gender and presenting symptom.  You can have a play if you like … just click HERE.


So what are the lessons here?

  1. We need to have the most experienced diagnosticians at the start of the improvement process.
  2. The first diagnostic assessment can be very quick so long as we have developed evidence-based heuristics.
  3. We can accelerate the training in diagnostic skills using simple information technology and basic analysis techniques.

And exactly the same is true in the health care system improvement.

We need to have an experienced health care improvement practitioner involved at the start, because if we skip this critical study step and move to plan without a correct diagnosis, then we will make errors, poor decisions, and counter-productive actions.  And then generate more work, more queues, more delays, more chaos, more distress and increased costs.

Exactly the opposite of what we want.

Q1: So, how do we develop experienced improvement practitioners more quickly?

Q2: Is there a hot learning system for improvement science?

A: Yes, there is. It can be found here.

The Marmite Effect

Have you heard the phrase “you either love it or you hate it“?  It is called the Marmite Effect.

Improvement science has Marmite-like effect on some people, or more specifically, the theory part does.

Both evidence and experience show that most people prefer to learn-by-doing first; and then consolidate their learning with the minimum, necessary amount of supporting theory.

But that is not how we usually share what we know with others.  We usually attempt to teach the theory first, perhaps in the belief that it will speed up the process of learning.

Sadly, it usually has the opposite effect. Too much theory too soon often creates a barrier to engagement. It actually slows learning down! Which was not the impact we were intending.


The implications of this is that teachers of the science of improvement need to provide a range of different ways to engage with the subject.  Complementary ways.  And leave the choice of which suits whom … to the learner.

And the way to tell if it is working is … the sound of laughter.

Why is that?


Laughing is a complex behaviour that leaves us feeling happier. Which is good.

Comedians make a living from being able to trigger this behaviour in their audiences, and we will gladly part with hard cash when we know something will make us feel better.

And laughing is one of the healthiest ways to feel better!

So why do we laugh when we are learning?

It is believed that one trigger for the laughter reaction is the sudden shift from one perspective to another.  More specifically, a mental shift that relieves a growing emotional tension.  The punch line of a really good joke for example.

And later-in-life learning is often more a process of unlearning.

When we challenge a learned assumption with evidence and if we disprove it … we are unlearning.  And doing that generates emotional tension. We are often very attached to our unconscious assumptions and will usually resist them being challenged.

The way to unlearn effectively is to use the evidence of our own eyes to raise doubts about our unconscious assumptions.  We need to actively generate a bit of confusion.

Then, we resolve the apparent paradox by creatively shifting perspective, often with a real example, a practical explanation or a hands-on demonstration.

And when we experience the “Ah ha! Now I see!” reaction, and we emerge from the fog of confusion, we will relieve the emotional tension and our involuntary reaction is to laugh.

But if our teacher unintentionally triggers a Marmite effect; a “Yeuk, I am NOT enjoying this!” feeling, then we need to respect that, and step back, and adopt a different tack.


Over the last few months I have been experimenting with different approaches to introducing the principles of improvement-by-design.

And the results are clear.

A minority prefer to start with the abstract theory, and then apply it in practice.

The majority have various degrees of Marmite reaction to the theory, and some are so put off that they actively disengage.  But when they have an opportunity to see the same principles demonstrated in a concrete, practical way; they learn and laugh.

Unlearning-by-doing seems to work better for the majority.

So, if you want to have fun and learn how to deliver significant and sustained improvements … then the evidence points to this as the starting point …

… the Flow Design Practical Skills One Day Workshop.

And if you also want to dip into a bit of the tried-and-tested theory that underpins improvement-by-design then you can do that as well, either before or later (when it becomes necessary), or both.


So, to have lots of fun and learn some valuable improvement-by-design practical skills at the same time …  click here.

The Storyboard

This week about thirty managers and clinicians in South Wales conducted two experiments to test the design of the Flow Design Practical Skills One Day Workshop.

Their collective challenge was to diagnose and treat a “chronically sick” clinic and the majority had no prior exposure to health care systems engineering (HCSE) theory, techniques, tools or training.

Two of the group, Chris and Jat, had been delegates at a previous ODWS, and had then completed their Level-1 HCSE training and real-world projects.

They had seen it and done it, so this experiment was to test if they could now teach it.

Could they replicate the “OMG effect” that they had experienced and that fired up their passion for learning and using the science of improvement?

Continue reading “The Storyboard”

The Pathology of Variation I

In medical training we have to learn about lots of things. That is one reason why it takes a long time to train a competent and confident clinician.

First, we learn the anatomy (structure) and the physiology (function) of the normal, healthy human.

Then we learn about how this amazingly complicated system can go wrong.  We learn about pathology.  And we do that so that we understand the relationship between the cause (disease) and the effect (symptoms and signs).

Then we learn about diagnostics – which is how to work backwards from the effects to the most likely cause(s).

And only then can we learn about therapeutics – the design and delivery of a treatment plan that we are confident will relieve the symptoms by curing the disease.

And we learn about prevention – how to avoid some illnesses (and delay others) by addressing the root causes earlier.  Much of the increase in life expectancy over the last 200 years has come from prevention, not from cure.


The NHS is an amazingly complicated system, and it too can go wrong.  It can exhibit a wide spectrum of symptoms and signs; medical errors, long delays, unhappy patients, burned-out staff, and overspent budgets.

But, there is no equivalent training in how to diagnose and treat a sick health care system.  And this is not acceptable, especially given that the knowledge of how to do this is already available.

It is called complex adaptive systems engineering (CASE).


Before the Renaissance, the understanding of how the body works was primitive and it was believed that illness was “God’s Will” so we had to just grin-and-bear (and pray).

The Scientific Revolution brought us new insights, profound theories, innovative techniques and capability-extending tools.  And the impact has been dramatic.  Those who do have access to this knowledge live better and longer than ever.  Those who do not … do not.

Our current understanding of how health care systems work is, to be blunt, medieval.  The current approaches amount to little more than rune reading, incantations and the prescription of purgatives and leeches.  And the impact is about as effective.

So we need to study the anatomy, physiology, pathology, diagnostics and therapeutics of complex adaptive systems like healthcare.  And most of all we need to understand how to prevent catastrophes happening in the first place.  We need the NHS to be immortal.


And this week a prototype complex adaptive pathology training system was tested … and it employed cutting-edge 21st Century technology: Pasta Twizzles.

The specific topic under scrutiny was variation.  A brain-bending concept that is usually relegated to the mystical smoke-and-mirrors world called “Sadistics”.

But no longer!

The Mists-of-Jargon and Fog-of-Formulae were blown away as we switched on the Fan-of-Facilitation and the Light-of-Simulation and went exploring.

Empirically. Pragmatically.


And what we discovered was jaw-dropping.

A disease called the “Flaw of Averages” and its malignant manifestation “Carveoutosis“.


And with our new knowledge we opened the door to a previously hidden world of opportunity and improvement.

Then we activated the Laser-of-Insight and evaporated the queues and chaos that, before our new understanding, we had accepted as inevitable and beyond our understanding or control.

They were neither. And never had been. We were deluding ourselves.

Welcome to the Resilient Design – Practical Skills – One Day Workshop.

Validation Test: Passed.

Diagnose-Design-Deliver

A story was shared this week.

A story of hope for the hard-pressed NHS, its patients, its staff and its managers and its leaders.

A story that says “We can learn how to fix the NHS ourselves“.

And the story comes with evidence; hard, objective, scientific, statistically significant evidence.


The story starts almost exactly three years ago when a Clinical Commissioning Group (CCG) in England made a bold strategic decision to invest in improvement, or as they termed it “Achieving Clinical Excellence” (ACE).

They invited proposals from their local practices with the “carrot” of enough funding to allow GPs to carve-out protected time to do the work.  And a handful of proposals were selected and financially supported.

This is the story of one of those proposals which came from three practices in Sutton who chose to work together on a common problem – the unplanned hospital admissions in their over 70’s.

Their objective was clear and measurable: “To reduce the cost of unplanned admissions in the 70+ age group by working with hospital to reduce length of stay.

Did they achieve their objective?

Yes, they did.  But there is more to this story than that.  Much more.


One innovative step they took was to invest in learning how to diagnose why the current ‘system’ was costing what it was; then learning how to design an improvement; and then learning how to deliver that improvement.

They invested in developing their own improvement science skills first.

They did not assume they already knew how to do this and they engaged an experienced health care systems engineer (HCSE) to show them how to do it (i.e. not to do it for them).

Another innovative step was to create a blog to make it easier to share what they were learning with their colleagues; and to invite feedback and suggestions; and to provide a journal that captured the story as it unfolded.

And they measured stuff before they made any changes and afterwards so they could measure the impact, and so that they could assess the evidence scientifically.

And that was actually quite easy because the CCG was already measuring what they needed to know: admissions, length of stay, cost, and outcomes.

All they needed to learn was how to present and interpret that data in a meaningful way.  And as part of their IS training,  they learned how to use system behaviour charts, or SBCs.


By Jan 2015 they had learned enough of the HCSE techniques and tools to establish the diagnosis and start to making changes to the parts of the system that they could influence.


Two years later they subjected their before-and-after data to robust statistical analysis and they had a surprise. A big one!

Reducing hospital mortality was not a stated objective of their ACE project, and they only checked the mortality data to be sure that it had not changed.

But it had, and the “p=0.014” part of the statement above means that the probability that this 20.0% reduction in hospital mortality was due to random chance … is less than 1.4%.  [This is well below the 5% threshold that we usually accept as “statistically significant” in a clinical trial.]

But …

This was not a randomised controlled trial.  This was an intervention in a complicated, ever-changing system; so they needed to check that the hospital mortality for comparable patients who were not their patients had not changed as well.

And the statistical analysis of the hospital mortality for the ‘other’ practices for the same patient group, and the same period of time confirmed that there had been no statistically significant change in their hospital mortality.

So, it appears that what the Sutton ACE Team did to reduce length of stay (and cost) had also, unintentionally, reduced hospital mortality. A lot!


And this unexpected outcome raises a whole raft of questions …


If you would like to read their full story then you can do so … here.

It is a story of hunger for improvement, of humility to learn, of hard work and of hope for the future.

Surgeon Designers

This is a snapshot of an experiment in progress.  The question being asked is “Can consultant surgeons be trained to be system flow designers in one day?”

On the left are Kate Silvester and Phil Debenham … their doctor/trainers.

 

On the right are some brave volunteer consultant surgeons.

It is a tense moment. The focused concentration is palpable. It is a tough design assignment … a chronically chaotic one-stop outpatient clinic. They know it well.


They have the raw, unprocessed, data and they are deep into diagnosis mode.  On the other side of the room is another team of consultant surgeon volunteers who are struggling with the same challenge. Competition is in the air. Reputations are on the line. The game is on.

They are racing to generate this … a process template chart … that illustrates the conversion of raw event data into something visible and meaningful. A Gantt chart.

Their tools are basic – coloured pens and squared paper – just as Henry L. Gantt used in 1916 – a hundred years ago.

Hidden in this Gantt chart is the diagnosis, the open door to the path to improving this clinic design.  It is as plain as the nose on your face … if you know what to look for. They don’t. Well, … not yet.


Skip forwards to later in the experiment. Both teams have solved the ‘impossible’ problem. They have diagnosed the system design flaw that was causing the queues, chaos and waiting … and they have designed and verified a solution. With no more than squared paper and coloured pens.  Henry G would be delighted.

And they are justifiably proud of their achievement because, when they tested their design in the real world, it showed that the queues and chaos had “evaporated”.  And it cost … nothing.


At the start of the experiment they were unaware of what was possible. At the end of the experiment they knew how to do it. In one day.

The question: ‘”Can consultant surgeons be trained to be system flow designers in one day?”

The answer: “Yes”


 

The Pressure Cooker

About a year ago we looked back at the previous 10 years of NHS unscheduled care performance …

click here to read

… and warned that a catastrophe was on the way because we had unintentionally created a urgent care “pressure cooker”.

 

Did waving the red warning flag make any difference? It seems not.

The catastrophe unfolded as predicted … A&E performance slumped to an all-time low, and has not recovered.


A pressure cooker is an elegantly simple self-regulating system.  A strong metal box with a sealed lid and a pressure-sensitive valve.  Food cooks more quickly at a higher temperature, and we can increase the boiling point of water by increasing the ambient pressure.  So all we need to do is put some water in the cooker, close the lid, set the pressure limit we need (i.e. the temperature we want) and apply some heat.  Simple.  As the water boils the steam increases the pressure inside, until the regulator valve opens and lets a bit of steam out.  The more heat we apply – the faster the steam comes out – but the internal pressure and temperature remain constant.  An elegantly simple self-regulating system.


Our unscheduled care acute hospital “pressure cooker” design is very similar – but it has an additional feature – we can squeeze raw patients in through a one-way valve labelled “admissions”.  The internal pressure will eventually squeeze them out through another one-way pressure-sensitive valve called “discharges”.

But there is not much head-space inside our hospital (i.e. empty beds) so pushing patients in will increase the pressure inside, and it will trigger an internal reaction called “fire-fighting” that generates heat (but no insight).  When the internal pressure reaches the critical level, patients are squeezed out; ready-or-not.

What emerges from the chaotic internal cauldron is a mixture of under-cooked, just-right, and over-cooked patients.  And we then conduct quality control audits and we label what we find as “quality variation”, but it looks random so it gives us no clues as to the causes or what to do next.

Equilibrium is eventually achieved – what goes in comes out – the pressure and temperature auto-regulate – the chaos becomes chronic – and the quality of the output is predictably unacceptable and unpredictable, with some of it randomly spoiled (i.e. harmed).

And our acute care pressure cooker is very resistant to external influences. It is one of its key design features, it is an auto-regulating system.


Option 1: Admissions Avoidance
Squeezing a bit less in does not make any difference to the internal pressure and temperature.  It auto-regulates.  The reduced inflow means a reduced outflow and a longer cooking time and we just get less under-cooked and more over-cooked output.  Oh, and we go bust because our revenue has reduced but our costs have not.

Option 2: Build a Bigger Hospital
Building a bigger pressure cooker (i.e. adding more beds) does not make any sustained difference either.  Again the system auto-regulates.  The extra space-capacity allows a longer cooking time – and again we get less under-cooked and more over-cooked output.  Oh, and we still go bust (same revenue but increased cost).

Option 3: Reduce the Expectation
Turning down the heat (i.e. reducing the 4 hr A&E lead time target yield from 98% to 95%) does not make any difference. Our elegant auto-regulating design adjusts itself to sustain the internal pressure and temperature.  Output is still variable, but least we do not go bust.


This metaphor may go some way to explain why the intuitively obvious “initiatives” to improve unscheduled care performance appear to have had no significant or sustained impact.

And what is more worrying is that they may even have made the situation worse.

Also, working inside an urgent care pressure cooker is dangerous.  People get emotionally damaged and permanently scarred.


The good news is that a different approach is available … a health and social care systems engineering (HSCSE) approach … one that we could use to change the fundamental design from fire-fighter to flow-facilitator.

Using HSCSE theory, techniques and tools we could specify, design, build, verify, implement and validate a low-pressure, low-resistance, low-wait, low-latency, high-efficiency unscheduled care flow design that is safe, timely, effective and affordable.

But we are not training NHS staff to do that.

Why is that?  Is is because we are not aware that this is possible, or that we do not believe that it can work, or that we lack the capability to do it? Or all three?

The first step is raising awareness … so here is an example that proves it is possible.

The Fog

businessman_cloud_periscope_18347The path from chaos to calm is not clearly marked.  If it were we would not have chaotic health care processes, anxious patients, frustrated staff and escalating costs.

Many believe that there is no way out of the chaos. They have given up trying.

Some still nurture the hope that there is a way and are looking for a path through the fog of confusion.

A few know that there is a way out because they have been shown a path from chaos to calm and can show others how to find it.

Someone, a long time ago, explored the fog and discovered clarity of understanding on the far side, and returned with a Map of the Mind-field.


Q: What is causing The Fog?

When hot rhetoric meets cold reality the fog of disillusionment forms.

Q: Where does the hot rhetoric come from?

Passionate, well-intended and ill-informed people in positions of influence, authority and power. The orators, debaters and commentators.

They do not appear to have an ability to diagnose and to design, so cannot generate effective decisions and coordinate efficient delivery of solutions.

They have not learned how and seem to be unaware of it.

If they had, then they would be able to show that there is a path from chaos to calm.

A safe, quick, surprisingly enjoyable and productive path.

If they had the know-how then they could pull from the front in the ‘right’ direction, rather than push from the back in the ‘wrong’ one.


And the people who are spreading this good news are those who have just emerged from the path.  Their own fog of confusion evaporating as they discovered the clarity of hindsight for themselves.

Ah ha!  Now I see! Wow!  The view from the far side of The Fog is amazing and exciting. The opportunity and potential is … unlimited.  I must share the news. I must tell everyone! I must show them how-to.

Here is a story from Chris Jones who has recently emerged from The Fog.

And here is a description of part of the Mind-field Map, narrated in 2008 by Kate Silvester, a doctor and manufacturing systems engineer.

Precious Life Time

stick_figure_help_button_150_wht_9911Imagine this scenario:

You develop some non-specific symptoms.

You see your GP who refers you urgently to a 2 week clinic.

You are seen, assessed, investigated and informed that … you have cancer!


The shock, denial, anger, blame, bargaining, depression, acceptance sequence kicks off … it is sometimes called the Kübler-Ross grief reaction … and it is a normal part of the human psyche.

But there is better news. You also learn that your condition is probably treatable, but that it will require chemotherapy, and that there are no guarantees of success.

You know that time is of the essence … the cancer is growing.

And time has a new relevance for you … it is called life time … and you know that you may not have as much left as you had hoped.  Every hour is precious.


So now imagine your reaction when you attend your local chemotherapy day unit (CDU) for your first dose of chemotherapy and have to wait four hours for the toxic but potentially life-saving drugs.

They are very expensive and they have a short shelf-life so the NHS cannot afford to waste any.   The Aseptic Unit team wait until all the safety checks are OK before they proceed to prepare your chemotherapy.  That all takes time, about four hours.

Once the team get to know you it will go quicker. Hopefully.

It doesn’t.

The delays are not the result of unfamiliarity … they are the result of the design of the process.

All your fellow patients seem to suffer repeated waiting too, and you learn that they have been doing so for a long time.  That seems to be the way it is.  The waiting room is well used.

Everyone seems resigned to the belief that this is the best it can be.

They are not happy about it but they feel powerless to do anything.


Then one day someone demonstrates that it is not the best it can be.

It can be better.  A lot better!

And they demonstrate that this better way can be designed.

And they demonstrate that they can learn how to design this better way.

And they demonstrate what happens when they apply their new learning …

… by doing it and by sharing their story of “what-we-did-and-how-we-did-it“.

CDU_Waiting_Room

If life time is so precious, why waste it?

And perhaps the most surprising outcome was that their safer, quicker, calmer design was also 20% more productive.

FrailSafe Design

frailsafeSafe means avoiding harm, and safety is an emergent property of a well-designed system.

Frail means infirm, poorly, wobbly and at higher risk of harm.

So we want our health care system to be a FrailSafe Design.

But is it? How would we know? And what could we do to improve it?


About ten years ago I was involved in a project to improve the safety design of a specific clinical stream flowing through the hospital that I work in.

The ‘at risk’ group of patients were frail elderly patients admitted as an emergency after a fall and who had suffered a fractured thigh bone. The neck of the femur.

Historically, the outcome for these patients was poor.  Many do not survive, and many of the survivors never returned to independent living. They become even more frail.


The project was undertaken during an organisational transition, the hospital was being ‘taken over’ by a bigger one.  This created a window of opportunity for some disruptive innovation, and the project was labelled as a ‘Lean’ one because we had been inspired by similar work done at Bolton some years before and Lean was the flavour of the month.

The actual change was small: it was a flow design tweak that cost nothing to implement.

First we asked two flow questions:
Q1: How many of these high-risk frail patients do we admit a year?
A1: About one per day on average.
Q2: What is the safety critical time for these patients?
A2: The first four days.  The sooner they have hip surgery and are able to be actively mobilise the better their outcome.

Second we applied Little’s Law which showed the average number of patients in this critical phase is four. This was the ‘work in progress’ or WIP.

And we knew that variation is always present, and we knew that having all these patients in one place would make it much easier for the multi-disciplinary teams to provide timely care and to avoid potentially harmful delays.

So we suggested that one six-bedded bay on one of the trauma wards be designated the Fractured Neck Of Femur bay.

That was the flow diagnosis and design done.

The safety design was created by the multi-disciplinary teams who looked after these patients: the geriatricians, the anaesthetists, the perioperative emergency care team (PECT), the trauma and orthopaedic team, the physiotherapists, and so on.

They designed checklists to ensure that all #NOF patients got what they needed when they needed it and so that nothing important was left to chance.

And that was basically it.

And the impact was remarkable. The stream flowed. And one measured outcome was a dramatic and highly statistically significant reduction in mortality.

Injury_2011_Results
The full paper was published in Injury 2011; 42: 1234-1237.

We had created a FrailSafe Design … which implied that what was happening before was clearly not safe for these frail patients!


And there was an improved outcome for the patients who survived: A far larger proportion rehabilitated and returned to independent living, and a far smaller proportion required long-term institutional care.

By learning how to create and implement a FrailSafe Design we had added both years-to-life and life-to-years.

It cost nothing to achieve and the message was clear, as this quote is from the 2011 paper illustrates …

Injury_2011_Message

What was a bit disappointing was the gap of four years between delivering this dramatic and highly significant patient safety and quality improvement and the sharing of the story.


What is more exciting is that the concept of FrailSafe is growing, evolving and spreading.

Type II Error

figure_pointing_out_chart_data_150_clr_8005It was the time for Bob and Leslie’s regular Improvement Science coaching session.

<Leslie> Hi Bob, how are you today?

<Bob> I am getting over a winter cold but otherwise I am good.  And you?

<Leslie> I am OK and I need to talk something through with you because I suspect you will be able to help.

<Bob> OK. What is the context?

<Leslie> Well, one of the projects that I am involved with is looking at the elderly unplanned admission stream which accounts for less than half of our unplanned admissions but more than half of our bed days.

<Bob> OK. So what were you looking to improve?

<Leslie> We want to reduce the average length of stay so that we free up beds to provide resilient space-capacity to ease the 4-hour A&E admission delay niggle.

<Bob> That sounds like a very reasonable strategy.  So have you made any changes and measured any improvements?

<Leslie> We worked through the 6M Design® sequence. We studied the current system, diagnosed some time traps and bottlenecks, redesigned the ones we could influence, modified the system, and continued to measure to monitor the effect.

<Bob> And?

<Leslie> It feels better but the system behaviour charts do not show an improvement.

<Bob> Which charts, specifically?

<Leslie> The BaseLine XmR charts of average length of stay for each week of activity.

<Bob> And you locked the limits when you made the changes?

<Leslie> Yes. And there still were no red flags. So that means our changes have not had a significant effect. But it definitely feels better. Am I deluding myself?

<Bob> I do not believe so. Your subjective assessment is very likely to be accurate. Our Chimp OS 1.0 is very good at some things! I think the issue is with the tool you are using to measure the change.

<Leslie> The XmR chart?  But I thought that was THE tool to use?

<Bob> Like all tools it is designed for a specific purpose.  Are you familiar with the term Type II Error.

<Leslie> Doesn’t that come from research? I seem to remember that is the error we make when we have an under-powered study.  When our sample size is too small to confidently detect the change in the mean that we are looking for.

<Bob> A perfect definition!  The same error can happen when we are doing before and after studies too.  And when it does, we see the pattern you have just described: the process feels better but we do not see any red flags on our BaseLine© chart.

<Leslie> But if our changes only have a small effect how can it feel better?

<Bob> Because some changes have cumulative effects and we omit to measure them.

<Leslie> OMG!  That makes complete sense!  For example, if my bank balance is stable my average income and average expenses are balanced over time. So if I make a small-but-sustained improvement to my expenses, like using lower cost generic label products, then I will see a cumulative benefit over time to the balance, but not the monthly expenses; because the noise swamps the signal on that chart!

<Bob> An excellent analogy!

<Leslie> So the XmR chart is not the tool for this job. And if this is the only tool we have then we risk making a Type II error. Is that correct?

<Bob> Yes. We do still use an XmR chart first though, because if there is a big enough and fast enough shift then the XmR chart will reveal it.  If there is not then we do not give up just yet; we reach for our more sensitive shift detector tool.

<Leslie> Which is?

<Bob> I will leave you to ponder on that question.  You are a trained designer now so it is time to put your designer hat on and first consider the purpose of this new tool, and then create the outline a fit-for-purpose design.

<Leslie> OK, I am on the case!

Anti-Chaos

Hypothesis: Chaotic behaviour of healthcare systems is inevitable without more resources.

This appears to be a rather widely held belief, but what is the evidence?

Can we disprove this hypothesis?

Chaos is a predictable, emergent behaviour of many systems, both natural and man made, a discovery that was made rather recently, in the 1970’s.  Chaotic behaviour is not the same as random behaviour.  The fundamental difference is that random implies independence, while chaos requires the opposite: chaotic systems have interdependent parts.

Chaotic behaviour is complex and counter-intuitive, which may explain why it took so long for the penny to drop.


Chaos is a complex behaviour and it is tempting to assume that complicated structures always lead to complex behaviour.  But they do not.  A mechanical clock is a complicated structure but its behaviour is intentionally very stable and highly predictable – that is the purpose of a clock.  It is a fit-for-purpose design.

The healthcare system has many parts; it too is a complicated system; it has a complicated structure.  It is often seen to demonstrate chaotic behaviour.

So we might propose that a complicated system like healthcare could also be stable and predictable. If it were designed to be.


But there is another critical factor to take into account.

A mechanical clock only has inanimate cogs and springs that only obey the Laws of Physics – and they are neither adaptable nor negotiable.

A healthcare system is different. It is a living structure. It has patients, providers and purchasers as essential components. And the rules of how people work together are both negotiable and adaptable.

So when we are thinking about a healthcare system we are thinking about a complex adaptive system or CAS.

And that changes everything!


The good news is that adaptive behaviour can be a very effective anti-chaos strategy, if it is applied wisely.  The not-so-good news is that if it is not applied wisely then it can actually generate even more chaos.


Which brings us back to our hypothesis.

What if the chaos we are observing on out healthcare system is actually iatrogenic?

What if we are unintentionally and unconsciously generating it?

These questions require an answer because if we are unwittingly contributing to the chaos, with insight, understanding and wisdom we can intentionally calm it too.

These questions also challenge us to study our current way of thinking and working.  And in that challenge we will need to demonstrate a behaviour called humility. An ability to acknowledge that there are gaps in our knowledge and our understanding. A willingness to learn.


This all sounds rather too plausible in theory. What about an example?

Let us consider the highest flow process in healthcare: the outpatient clinic stream.

The typical design is a three-step process called the New-Test-Review design. This sequential design is simpler because the steps are largely independent of each other. And this simplicity is attractive because it is easier to schedule so is less likely to be chaotic. The downsides are the queues and delays between the steps and the risk of getting lost in the system. So if we are worried that a patient may have a serious illness that requires prompt diagnosis and treatment (e.g. cancer), then this simpler design is actually a potentially unsafe design.

A one-stop clinic is a better design because the New-Test-Review steps are completed in one visit, and that is better for everyone. But, a one-stop clinic is a more challenging scheduling problem because all the steps are now interdependent, and that is fertile soil for chaos to emerge.  And chaos is exactly what we often see.

Attending a chaotic one-stop clinic is frustrating experience for both patients and staff, and it is also less productive use of resources. So the chaos and cost appears to be price we are asked to pay for a quicker and safer design.

So is the one stop clinic chaos inevitable, or is it avoidable?

Simple observation of a one stop clinic shows that the chaos is associated with queues – which are visible as a waiting room full of patients and front-of-house staff working very hard to manage the queue and to signpost and soothe the disgruntled patients.

What if the one stop clinic queue and chaos is iatrogenic? What if it was avoidable without investing in more resources? Would the chaos evaporate? Would the quality improve?  Could we have a safer, calmer, higher quality and more productive design?

Last week I shared evidence that proved the one-stop clinic chaos was iatrogenic – by showing it was avoidable.

A team of healthcare staff were shown how to diagnose the cause of the queue and were then able to remove that cause, and to deliver the same outcome without the queue and the associated chaos.

And the most surprising lesson that the team learned was that they achieved this improvement using the same resources as before; and that those resources also felt the benefit of the chaos evaporating. Their work was easier, calmer and more predictable.

The impossible-without-more-resources hypothesis had been disproved.

So, where else in our complicated and complex healthcare system might we apply anti-chaos?

Everywhere?


And for more about complexity science see Santa Fe Institute

The Magic Black Box

stick_figure_magic_carpet_150_wht_5040It was the appointed time for Bob and Leslie’s regular coaching session as part of the improvement science practitioner programme.

<Leslie> Hi Bob, I am feeling rather despondent today so please excuse me in advance if you hear a lot of “Yes, but …” language.

<Bob> I am sorry to hear that Leslie. Do you want to talk about it?

<Leslie> Yes, please.  The trigger for my gloom was being sent on a mandatory training workshop.

<Bob> OK. Training to do what?

<Leslie> Outpatient demand and capacity planning!

<Bob> But you know how to do that already, so what is the reason you were “sent”?

<Leslie> Well, I am no longer sure I know how to it.  That is why I am feeling so blue.  I went more out of curiosity and I came away utterly confused and with my confidence shattered.

<Bob> Oh dear! We had better start at the beginning.  What was the purpose of the workshop?

<Leslie> To train everyone in how to use an Outpatient Demand and Capacity planning model, an Excel one that we were told to download along with the User Guide.  I think it is part of a national push to improve waiting times for outpatients.

<Bob> OK. On the surface that sounds reasonable. You have designed and built your own Excel flow-models already; so where did the trouble start?

<Leslie> I will attempt to explain.  This was a paragraph in the instructions. I felt OK with this because my Improvement Science training has given me a very good understanding of basic demand and capacity theory.

IST_DandC_Model_01<Bob> OK.  I am guessing that other delegates may have felt less comfortable with this. Was that the case?

<Leslie> The training workshops are targeted at Operational Managers and the ones I spoke to actually felt that they had a good grasp of the basics.

<Bob> OK. That is encouraging, but a warning bell is ringing for me. So where did the trouble start?

<Leslie> Well, before going to the workshop I decided to read the User Guide so that I had some idea of how this magic tool worked.  This is where I started to wobble – this paragraph specifically …

IST_DandC_Model_02

<Bob> H’mm. What did you make of that?

<Leslie> It was complete gibberish to me and I felt like an idiot for not understanding it.  I went to the workshop in a bit of a panic and hoped that all would become clear. It didn’t.

<Bob> Did the User Guide explain what ‘percentile’ means in this context, ideally with some visual charts to assist?

<Leslie> No and the use of ‘th’ and ‘%’ was really confusing too.  After that I sort of went into a mental fog and none of the workshop made much sense.  It was all about practising using the tool without any understanding of how it worked. Like a black magic box.


<Bob> OK.  I can see why you were confused, and do not worry, you are not an idiot.  It looks like the author of the User Guide has unwittingly used some very confusing and ambiguous terminology here.  So can you talk me through what you have to do to use this magic box?

<Leslie> First we have to enter some of our historical data; the number of new referrals per week for a year; and the referral and appointment dates for all patients for the most recent three months.

<Bob> OK. That sounds very reasonable.  A run chart of historical demand and the raw event data for a Vitals Chart® is where I would start the measurement phase too – so long as the data creates a valid 3 month reporting window.

<Leslie> Yes, I though so too … but that is not how the black box model seems to work. The weekly demand is used to draw an SPC chart, but the event data seems to disappear into the innards of the black box, and recommendations pop out of it.

<Bob> Ah ha!  And let me guess the relationship between the term ‘percentile’ and the SPC chart of weekly new demand was not explained?

<Leslie> Spot on.  What does percentile mean?


<Bob> It is statistics jargon. Remember that we have talked about the distribution of the data around the average on a BaseLine chart; and how we use the histogram feature of BaseLine to show it visually.  Like this example.

IST_DandC_Model_03<Leslie> Yes. I recognise that. This chart shows a stable system of demand with an average of around 150 new referrals per week and the variation distributed above and below the average in a symmetrical pattern, falling off to zero around the upper and lower process limits.  I believe that you said that over 99% will fall within the limits.

<Bob> Good.  The blue histogram on this chart is called a probability distribution function, to use the terminology of a statistician.

<Leslie> OK.

<Bob> So, what would happen if we created a Pareto chart of demand using the number of patients per week as the categories and ignoring the time aspect? We are allowed to do that if the behaviour is stable, as this chart suggests.

<Leslie> Give me a minute, I will need to do a rough sketch. Does this look right?

IST_DandC_Model_04

<Bob> Perfect!  So if you now convert the Y-axis to a percentage scale so that 52 weeks is 100% then where does the average weekly demand of about 150 fall? Read up from the X-axis to the line then across to the Y-axis.

<Leslie> At about 26 weeks or 50% of 52 weeks.  Ah ha!  So that is what a percentile means!  The 50th percentile is the average, the zeroth percentile is around the lower process limit and the 100th percentile is around the upper process limit!

<Bob> In this case the 50th percentile is the average, it is not always the case though.  So where is the 85th percentile line?

<Leslie> Um, 52 times 0.85 is 44.2 which, reading across from the Y-axis then down to the X-axis gives a weekly demand of about 170 per week.  That is about the same as the average plus one sigma according to the run chart.

<Bob> Excellent. The Pareto chart that you have drawn is called a cumulative probability distribution function … and that is usually what percentiles refer to. Comparative Statisticians love these but often omit to explain their rationale to non-statisticians!


<Leslie> Phew!  So, now I can see that the 65th percentile is just above average demand, and 85th percentile is above that.  But in the confusing paragraph how does that relate to the phrase “65% and 85% of the time”?

<Bob> It doesn’t. That is the really, really confusing part of  that paragraph. I am not surprised that you looped out at that point!

<Leslie> OK. Let us leave that for another conversation.  If I ignore that bit then does the rest of it make sense?

<Bob> Not yet alas. We need to dig a bit deeper. What would you say are the implications of this message?


<Leslie> Well.  I know that if our flow-capacity is less than our average demand then we will guarantee to create an unstable queue and chaos. That is the Flaw of Averages trap.

<Bob> OK.  The creator of this tool seems to know that.

<Leslie> And my outpatient manager colleagues are always complaining that they do not have enough slots to book into, so I conclude that our current flow-capacity is just above the 50th percentile.

<Bob> A reasonable hypothesis.

<Leslie> So to calm the chaos the message is saying I will need to increase my flow capacity up to the 85th percentile of demand which is from about 150 slots per week to 170 slots per week. An increase of 7% which implies a 7% increase in costs.

<Bob> Good.  I am pleased that you did not fall into the intuitive trap that a increase from the 50th to the 85th percentile implies a 35/50 or 70% increase! Your estimate of 7% is a reasonable one.

<Leslie> Well it may be theoretically reasonable but it is not practically possible. We are exhorted to reduce costs by at least that amount.

<Bob> So we have a finance versus governance bun-fight with the operational managers caught in the middle: FOG. That is not the end of the litany of woes … is there anything about Did Not Attends in the model?


<Leslie> Yes indeed! We are required to enter the percentage of DNAs and what we do with them. Do we discharge them or re-book them.

<Bob> OK. Pragmatic reality is always much more interesting than academic rhetoric and this aspect of the real system rather complicates things, at least for a comparative statistician. This is where the smoke and mirrors will appear and they will be hidden inside the black magic box.  To solve this conundrum we need to understand the relationship between demand, capacity, variation and yield … and it is rather counter-intuitive.  So, how would you approach this problem?

<Leslie> I would use the 6M Design® framework and I would start with a map and not with a model; least of all a magic black box one that I did not design, build and verify myself.

<Bob> And how do you know that will work any better?

<Leslie> Because at the One Day ISP Workshop I saw it work with my own eyes. The queues, waits and chaos just evaporated.  And it cost nothing.  We already had more than enough “capacity”.

<Bob> Indeed you did.  So shall we do this one as an ISP-2 project?

<Leslie> An excellent suggestion.  I already feel my confidence flowing back and I am looking forward to this new challenge. Thank you again Bob.

Emergent Learning

CAS_DiagramThe theme this week has been emergent learning.

By that I mean the ‘ah ha’ moment that happens when lots of bits of a conceptual jigsaw go ‘click’ and fall into place.

When, what initially appears to be smoky confusion suddenly snaps into sharp clarity.  Eureka!  And now new learning can emerge.


This did not happen by accident.  It was engineered.


The picture above is part of a bigger schematic map of a system – in this case a system related to the global health challenge of escalating obesity.

It is a complicated arrangement of boxes and arrows. There are  dotted lines that outline parts of the system that have leaky boundaries like the borders on a political map.

But it is a static picture of the structure … it tells us almost nothing about the function, the system behaviour.

And our intuition tells us that, because it is a complicated structure, it will exhibit complex and difficult to understand behaviour.  So, guided by our inner voice, we toss it into the pile labelled Wicked Problems and look for something easier to work on.


Our natural assumption that a complicated structure always leads to complex behavior is an invalid simplification, and one that we can disprove in a matter of moments.


Exhibit 1. A system can be complicated and yet still exhibit simple, stable and predictable behavior.

Harrison_H1The picture is of a clock designed and built by John Harrison (1693-1776).  It is called H1 and it is a sea clock.

Masters of sailing ships required very accurate clocks to calculate their longitude, the East-West coordinate on the Earth’s surface. And in the 18th Century this was a BIG problem. Too many ships were getting lost at sea.

Harrison’s sea clock is complicated.  It has many moving parts, but it was the most stable and accurate clock of its time.  And his later ones were smaller, more accurate and even more complicated.


Exhibit 2.  A system can be simple yet still exhibit complex, unstable and unpredictable behavior.

Double-compound-pendulumThe image is of a pendulum made of only two rods joined by a hinge.  The structure is simple yet the behavior is complex, and this can only be appreciated with a dynamic visualisation.

The behaviour is clearly not random. It has an emergent structure. It is called chaotic.

So, with these two real examples we have disproved our assumption that a complicated structure always leads to complex behaviour; and we have also disproved its inverse … that complex behavior always comes from a complicated structure.

The cognitive trap we have exposed here is over-generalisation, the unconscious habit of slipping in the implied [always].


This deeper understanding gives us hope.

John Harrison was a rare, naturally-gifted, mechanical genius.  And to make it easier, he was working on a purely mechanical system comprised of non-living parts that only obeyed the Laws of Newtonian physics.  And even with those advantages it took him decades to learn how to design and to build his sea clocks.  He was the first to do so and he was self-educated so his learning was emergent.

If there were a way to design complicated systems to exhibit stable and predictable behaviour, how could more of us learn how to do that?


Our healthcare system is not made of passive, mechanical cogs and springs.  The parts are active, living people whose actions are limited by physical Laws but whose decisions are steered by other policies … learned ones … and ones that can change.  These learned rules of thumb are called heuristics and they vary from person-to-person and from minute-to-minute.  Heuristics can be learned, unlearned, updated, and evolved.

This is called emergent learning.

And to generate it we only need to create the context for it … the rest happens … as if by magic … but only if we design a fit-for-purpose context.


This week I personally observed over a dozen healthcare staff simultaneously re-invent a complicated process scheduling technique, at the same time as using it to eliminate the  queues, waiting and chaos in the system they wanted to improve.

Their queues just evaporated … without requiring any extra capacity or money. Eureka!


We did not show them how to do it so they could not have just copied what we did.

We designed and built the context for their learning to emerge … and it did.  On its own.

The One Day Practical Skills Workshop delivered emergent learning … just as it was designed to do.

A health care system is a complex adaptive system (CAS), and system improvement-by-design is what systems engineers (SE) are trained to do.

And this emerging style of complex adaptive systems engineering (CASE) is at the cutting edge of human knowledge, and when applied in the health care domain it is called health care systems engineering (HCSE).

Our experience of the emergent learning that flows from the practical skills workshops verifies that CASE is both possible, learnable, teachable, applicable and effective.

Storytelling

figure_turning_a_custom_page_15415

Telling a compelling story of improvement is an essential skill for a facilitator and leader of change.

A compelling story has two essential components: cultural and technical. Otherwise known as emotional and factual.

Many of the stories that we hear are one or the other; and consequently are much less effective.


Some prefer emotive language and use stories of dismay and distress to generate an angry reaction: “That is awful we must DO something about that!”

And while emotion is the necessary fuel for action,  an angry mob usually attacks the assumed cause rather than the actual cause and can become ‘mindless’ and destructive.

Those who have observed the dangers of the angry mob opt for a more reflective, evidence-based, scientific, rational, analytical, careful, risk-avoidance approach.

And while facts are the necessary informers of decision, the analytical mind often gets stuck in the ‘paralysis of analysis’ swamp as layer upon layer of increasing complexity is exposed … more questions than answers.


So in a compelling story we need a bit of both.

We need a story that fires our emotions … and … we need a story that engages our intellect.

A bit of something for everyone.

And the key to developing this compelling-story-telling skill this is to start with something small enough to be doable in a reasonable period of time.  A short story rather than a lengthy legend.

A story, tale or fable.

Aesop’s Fables and Chaucer’s Canterbury Tales are still remembered for their timeless stories.


And here is a taste of such a story … one that has been published recently for all to read and to enjoy.

A Story of Learning Improvement Science

It is an effective blend of cultural and technical, emotional and factual … and to read the full story just follow the ‘Continue’ link.

Not as Easy as it Looks

smack_head_in_disappointment_150_wht_16653One of the traps for the inexperienced Improvement Science Practitioner is to believe that applying the science in the real world is as easy as it is in the safety of the training environment.

It isn’t.

The real world is messier and more complicated and it is easy to get lost in the fog of confusion and chaos.


So how do we avoid losing our footing, slipping into the toxic emotional swamp of organisational culture and giving ourselves an unpleasant dunking!

We use safety equipment … to protect ourselves and others from unintended harm.

The Improvement-by-Design framework is like a scaffold.  It is there to provide structure and safety.  The techniques and tools are like the harnesses, shackles, ropes, crampons, and pitons.  They give us flexibility and security.

But we need to know how to use them. We need to be competent as well as confident.

We do not want to tie ourselves up in knots … and we do not want to discover that we have not tied ourselves to something strong enough to support us if we slip. Which we will.


So we need to learn an practice the basics skills to the point that they are second nature.

We need to learn how to tie secure knots, quickly and reliably.

We need to learn how to plan an ascent … identifying the potential hazards and designing around them.

We need to learn how to assemble and check what we will need before we start … not too much and not too little.

We need to learn how to monitor out progress against our planned milestones and be ready to change the plan as we go …and even to abandon the attempt if necessary.


We would not try to climb a real mountain without the necessary training, planning, equipment and support … even though it might look easy.

And we do not try to climb an improvement mountain without the necessary training, planning, tools and support … even though it might look easy.

It is not as easy as it looks.

The Five-day versus Seven-day Bun-Fight

Dr_Bob_ThumbnailThere is a big bun-fight kicking off on the topic of 7-day working in the NHS.

The evidence is that there is a statistical association between mortality in hospital of emergency admissions and day of the week: and weekends are more dangerous.

There are fewer staff working at weekends in hospitals than during the week … and delays and avoidable errors increase … so risk of harm increases.

The evidence also shows that significantly fewer patients are discharged at weekends.


So the ‘obvious’ solution is to have more staff on duty at weekends … which will cost more money.


Simple, obvious, linear and wrong.  Our intuition has tricked us … again!


Let us unravel this Gordian Knot with a bit of flow science and a thought experiment.

1. The evidence shows that there are fewer discharges at weekends … and so demonstrates lack of discharge flow-capacity. A discharge process is not a single step, there are many things that must flow in sync for a discharge to happen … and if any one of them is missing or delayed then the discharge does not happen or is delayed.  The weakest link effect.

2. The evidence shows that the number of unplanned admissions varies rather less across the week; which makes sense because they are unplanned.

3. So add those two together and at weekends we see hospitals filling up with unplanned admissions – not because the sick ones are arriving faster – but because the well ones are leaving slower.

4. The effect of this is that at weekends the queue of people in beds gets bigger … and they need looking after … which requires people and time and money.

5. So the number of staffed beds in a hospital must be enough to hold the biggest queue – not the average or some fudged version of the average like a 95th percentile.

6. So a hospital running a 5-day model needs more beds because there will be more variation in bed use and we do not want to run out of beds and delay the admission of the newest and sickest patients. The ones at most risk.

7. People do not get sicker because there is better availability of healthcare services – but saying we need to add more unplanned care flow capacity at weekends implies that it does.  What is actually required is that the same amount of flow-resource that is currently available Mon-Fri is spread out Mon-Sun. The flow-capacity is designed to match the customer demand – not the convenience of the supplier.  And that means for all parts of the system required for unplanned patients to flow.  What, where and when. It costs the same.

8. Then what happens is that the variation in the maximum size of the queue of patients in the hospital will fall and empty beds will appear – as if by magic.  Empty beds that ensure there is always one for a new, sick, unplanned admission on any day of the week.

9. And empty beds that are never used … do not need to be staffed … so there is a quick way to reduce expensive agency staff costs.

So with a comprehensive 7-day flow-capacity model the system actually gets safer, less chaotic, higher quality and less expensive. All at the same time. Safety-Flow-Quality-Productivity.

Yield

Dr_Bob_ThumbnailA recurring theme this week has been the concept of ‘quality’.

And it became quickly apparent that a clear definition of quality is often elusive.

Which seems to have led to a belief that quality is difficult to measure because it is subjective and has no precise definition.

The science of quality improvement is nearly 100 years old … and it was shown a long time ago, in 1924 in fact, that it is rather easy to measure quality – objectively and scientifically.

The objective measure of quality is called “yield”.

To measure yield we simply ask all our customers this question:

Did your experience meet your expectation?” 

If the answer is ‘Yes’ then we count this as OK; if it is ‘No’ then we count it as Not OK.

Yield is the ratio of the OKs divided by the number of customers who answered.


But this tried-and-tested way of measuring quality has a design flaw:

Where does a customer get their expectation from?

Because if a customer has an unrealistically high expectation then whatever we do will be perceived by them as Not OK.

So to consistently deliver a high quality service (i.e. high yield) we need to be able to influence both the customer experience and the customer expectation.


If we set our sights on a worthwhile and realistic expectation and we broadcast that to our customers, then we also need a way of avoiding their disappointment … that our objective quality outcome audit may reveal.

One way to defuse disappointment is to set a low enough expectation … which is, sadly, the approach adopted by naysayers,  complainers, cynics and doom-mongers. The inept.

That is not the path to either improvement or to excellence. It is the path to apathy.

A better approach is to set ourselves some internal standards of expectation and to check at each step if our work meets our own standard … and if it fails then we know we need have some more work to do.

This commonly used approach to maintaining quality is called a check-and-correct design.

So let us explore the ramifications of this check-and-correct approach to quality.


Suppose the quality of the product or service that we deliver is influenced by many apparently random factors. And when we actually measure our yield we discover that the chance of getting a right-first-time outcome is about 50%.  This amounts to little more than a quality lottery and we could simulate that ‘random’ process by tossing a coin.

So to set a realistic expectation for future customers there are two further questions we need to answer:
1. How long can an typical customer expect to wait for our product or service?
2. How much can an typical customer expect to pay for our product or service?

It is not immediately and intuitively obvious what the answers to these questions are … so we need to perform an experiment to find out.

Suppose we have five customers who require our product or service … we could represent them as Post It Notes; and suppose we have a clock … we could measure how long the process is taking; and suppose we have our coin … we can simulate the yield of the step; … and suppose we do not start the lead time clock until we start the work for each customer.

We now have the necessary and sufficient components to assemble a simple simulation model of our system … a model that will give us realistic answers to our questions.

So let us see what happens … just click the ‘Start Game’ button.

Http iframes are not shown in https pages in many major browsers. Please read this post for details.


It is worth running this exercise about a dozen times and recording the data for each run … then plotting the results on a time-series chart.

The data to plot is the make-time (which is the time displayed on the top left) and the cost (which is display top middle).

The make-time is the time from starting the first game to completing the last task.

The cost is the number of coin tosses we needed to do to deliver all work to the required standard.

And here are the charts from my dozen runs (yours will be different).

PostItNote_MakeTimeChart

PostItNote_CostChart

The variation from run to run is obvious; as is the correlation between a make-time and a high cost.

The charts also answer our two questions … a make time up to 90 would not be exceptional and an average cost of 10 implies that is the minimum price we need to charge in order to stay in business.

Our customers are waiting while we check-and-correct our own errors and we are expecting them to pay for the extra work!

In the NHS we have a name for this low-quality high-cost design: Payment By Results.


The charts also show us what is possible … a make time of 20 and a cost of 5.

That happened when, purely by chance, we tossed five heads in a row in the Quality Lottery.

So with this insight we could consider how we might increase the probability of ‘throwing a head’ i.e. doing the work right-first-time … because we can see from our charts what would happen.

The improved quality and cost of changing ourselves and our system to remove the root causes of our errors.

Quality Improvement-by-Design.

That something worth learning how to do.

And can we honestly justify not doing it?

What is Productivity?

It was the time for Bob and Leslie’s regular coaching session. Dr_Bob_ThumbnailBob was already on line when Leslie dialed in to the teleconference.

<Leslie> Hi Bob, sorry I am a bit late.

<Bob> No problem Leslie. What aspect of improvement science shall we explore today?

<Leslie> Well, I’ve been working through the Safety-Flow-Quality-Productivity cycle in my project and everything is going really well.  The team are really starting to put the bits of the jigsaw together and can see how the synergy works.

<Bob> Excellent. And I assume they can see the sources of antagonism too.

<Leslie> Yes, indeed! I am now up to the point of considering productivity and I know it was introduced at the end of the Foundation course but only very briefly.

<Bob> Yes,  productivity was described as a system metric. A ratio of a steam metric and a stage metric … what we get out of the streams divided by what we put into the stages.  That is a very generic definition.

<Leslie> Yes, and that I think is my problem. It is too generic and I get it confused with concepts like efficiency.  Are they the same thing?

<Bob> A very good question and the short answer is “No”, but we need to explore that in more depth.  Many people confuse efficiency and productivity and I believe that is because we learn the meaning of words from the context that we see them used in. If  others use the words imprecisely then it generates discussion, antagonism and confusion and we are left with the impression of that it is a ‘difficult’ subject.  The reality is that it is not difficult when we use the words in a valid way.

<Leslie> OK. That reassures me a bit … so what is the definition of efficiency?

<Bob> Efficiency is measure of wasted resource – it is the ratio of the minimum cost of the resources required to complete one task divided by the actual cost of the resources used to complete one task.

<Leslie> Um.  OK … so how does time come into that?

<Bob> Cost is a generic concept … it can refer to time, money and lots of other things.  If we stick to time and money then we know that if we have to employ ‘people’ then time will cost money because people need money to buy essential stuff that the need for survival. Water, food, clothes, shelter and so on.

<Leslie> So, we could use efficiency in terms of resource-time required to complete a task?

<Bob> Yes. That is a very useful way of looking at it.

<Leslie> So, how is productivity different? Completed tasks out divided by the cash in to pay for resource time would be a productivity metric. It looks the same.

<Bob> Does it?  The definition of efficiency is possible cost divided by actual cost. It is not the same as our definition of system productivity.

<Leslie> Ah yes, I see. So do others define productivity the same way?

<Bob> Let us try looking it up on Wikipedia …

<Leslie> OK … here we go …

Productivity is an average measure of the efficiency of production. It can be expressed as the ratio of output to inputs used in the production process, i.e. output per unit of input”.

Now that is really confusing!  It looks like efficiency and productivity are the same. Let me see what the Wikipedia definition of efficiency is …

“Efficiency is the (often measurable) ability to avoid wasting materials, energy, efforts, money, and time in doing something or in producing a desired result”.

But that is closer to your definition of efficiency – the actual cost is the minimum cost plus the cost of waste.

<Bob> Yes.  I think you are starting to see where the confusion arises.  And this is because there is a critical piece of the jigsaw missing.

<Leslie> Oh …. and what is that?

<Bob> Worth.

<Leslie> Eh?

<Bob> Efficiency has nothing to do with whether the output of the stream has any worth.  I can produce a worthless product very efficiently.  And what if we have the situation where the output of my process is actually harmful.  The more efficiently I use my resources the more harm I will cause from a fixed amount of resource … and in that situation it is actually safer to have an inefficient process!

<Leslie> Wow!  That really hits the nail on the head … and the implications are … um … profound.  Efficiency is objective and relates only to flow … and between flow and productivity we have to cross the Safety-Quality line.  Productivity also includes the subjective concept of worth or value. That all makes complete sense now. A productive system is a subjectively and objectively win-win-win design.

<Bob> Yup.  Get the safety, flow and quality perspectives of the design in synergy and productivity will sky-rocket. It is called a Fit-4-Purpose design that creates a Value-4-Money product or service

Study-Plan-Do

knee_jerk_reflexA commonly used technique for continuous improvement is the Plan-Do-Study-Act or PDSA cycle.

This is a derivative of the PDCA cycle first described by Walter Shewhart in the 1930’s … where C is Check.

The problem with PDSA is that improvement does not start with a plan, it starts with some form of study … so SAPD would be a better order.


IHI_MFITo illustrate this point if we look at the IHI Model for Improvement … the first step is a pair of questions related to purpose “What are we trying to accomplish?” and “How will we know a change is an improvement?

With these questions we are stepping back and studying our shared perspective of our desired future.

It is a conscious and deliberate act.

We are examining our mental models … studying them … and comparing them.  We have not reached a diagnosis or a decision yet, so we cannot plan or do yet.

The third question is a combination of diagnosis and design … we need to understand our current state in order to design changes that will take up to our improved future state.

We cannot plan what to do or how to do it until we have decided and agreed what the future design will look like, and tested that our proposed future design is fit-4-purpose.


So improvement by discovery or by design does not start with plan, it starts with study.


And another word for study is ‘sense’ which may be a better one … because study implies a deliberate, conscious, often slow process … while sense is not so restrictive.

Very often our actions are not the result of a deliberative process … they are automatic and reflex. We do not think about them. They just sort of happen.

The image of the knee-jerk reflex illustrates the point.

In fact we have little conscious control over these automatic motor reflexes which respond much more quickly than our conscious thinking process can.  We are aware of the knee jerk after it has happened, not before, so we may be fooled into thinking that we ‘Do’ without a ‘Plan’.  But when we look in more detail we can see the sensory input and the hard-wired ‘plan’ that links to to motor output.  Study-Plan-Do.


The same is true for many other actions – our unconscious mind senses, processes, decides, plans and acts long before we are consciously aware … and often the only clue we have is a brief flash of emotion … and usually not even that.  Our behaviour is largely habitual.


And even in situations when we need to make choices the sense-recognise-act process is fast … such as when a patient suddenly becomes very ill … we switch into the Resuscitate mode which is a pre-planned sequence of steps that is guided by what are sensing … but it is not made up on the spot. There is no committee. No meetings. We just do what we have learned and practiced how to do … because it was designed to.   It still starts with Study … it is just that the Study phase is very short … we just need enough information to trigger the pre-prepared plan. ABC – Airway … Breathing … Circulation. No discussion. No debate.


So, improvement starts with Study … and depending on what we sense what happens next will vary … and it will involve some form of decision and plan.

1. Unconscious, hard-wired, knee jerk reflex.
2. Unconscious, learned, habitual behaviour.
3. Conscious, pre-planned, steered response.
4. Conscious, deliberation-diagnosis-design then delivery.

The difference is just the context and the timing.   They are all Study-Plan-Do.

 And the Plan may be to Do Nothing …. the Deliberate Act of Omission.


And when we go-and-see and study the external reality we sometimes get a surprise … what we see is not what we expect. We feel a sense of confusion. And before we can plan we need to adjust our mental model so that it better matches reality. We need to establish clarity.  And in this situation we are doing Study-Adjust-Plan-Do …. S(A)PD.

The “I am Great (and You are Not)” Trap

business_race__PA_150_wht_3222When we start the process of learning to apply the Science of Improvement in practice we need to start within our circle of influence.

It is just easier, quicker and safer to begin there – and to build our capability, experience and confidence in steps.

And when we get the inevitable ‘amazing’ result it is natural and reasonable for us to want to share the good news with others.  We crossed the finish line first and we want to celebrate.   And that is exactly what we need to do.


We just need to be careful how we do it.

We need to be careful not to unintentionally broadcast an “I am Great (and You are Not)” message – because if we do that we will make further change even more difficult.


Competition can be healthy or unhealthy  … just as scepticism can be.

We want to foster healthy competition … and to do that we have to do something that can feel counter-intuitive … we have to listen to our competitors; and we have to learn from them; and we have to share our discoveries with them.

Eh?


Just picture these two scenarios in your mind’s eye:

Scenario One: The competition is a war. There can only be one winner … the strongest, most daring, most cunning, most ruthless, most feared competitor. So secrecy and ingenuity are needed. Information must be hoarded. Untruths and confusion must be spread.

Scenario Two: The competition is a race. There can only be one winner … the strongest, most resilient, hardest working, fastest learning, most innovative, most admired competitor.  So openness and humility are needed. Information must be shared. Truths and clarity must be spread.

Compare the likely outcomes of the two scenarios.

Which one sounds the more productive, more rewarding and more enjoyable?


So the challenge for the champions of improvement is to appreciate and to practice a different version of the “I’m Great … ” mantra …

I’m Great (And So Are You).

Excellence By Design

top_surgeon_400_wht_7589All healthcare organisations strive for excellence, which is good, and most achieve mediocrity, which is not so good.

Why is that?

One cause is the design of their model for improvement … the one that is driven by targets, complaints, near misses, serious untoward incidents (SUIs) and never events (which are not never).

A model for improvement that is driven by failure feedback loops can only ever achieve mediocrity, not excellence.

Whaaaaaat?!* That’s rubbish”  I hear you cry … so let us see.


Try this simple test …. just ask any employee in your organisation this question (and start with yourself):

How do you know you are doing a good job?

If the first answer heard is “When no one is complaining” then you have a Mediocrity Design.


When customers have a disappointing experience most do not pen a letter or write an email to complain.  Most just sigh and lower their expectations to avoid future disappointment; many will grumble to family and friends; and only a few (about 5%) will actually complain. They are the really angry extreme.  So they can easily be fobbed off with platitudes … just being earnestly listened to and unreservedly apologised to is usually enough to take the wind out of their sails.  It will escort them back to the silent but disappointed majority whose expectation is being gradually eroded by relentless disappointment. Nothing fundamental needs to change because eventually the complaints dry up, apathy is re-established and chronic mediocrity is assured.


To achieve excellence we need a better answer to the “How do you know you are doing a good job?” question.

We need to be able to say “I know I am doing a good job because this is what a good outcome looks like; this is my essential contribution to achieving that outcome; and here are the measures of the intended outcomes that we are achieving.

In short we need a clear purpose, a defined part in the process that delivers that purpose, and we need an objective feedback loop that tells us that the purpose has been achieved and that our work is worthwhile.

And if  any of those components are missing then we know we have some improvement work to do.

The first step is usually answering the question “What is our purpose?

The second step is using the purpose to design and install the how-are-we-doing feedback loop.

And the  third step is to learn to use the success feedback loop to ensure that we are always working to have a necessary-and-sufficient process that delivers the intended outcome and that we are playing a part in that.

And when we are reliably achieving our purpose, we set ourselves an even better outcome – an even safer, calmer, higher quality and more productive one … and doing that will generate more improvement work to do.  We will not be idle.


That is the essence of Excellence-by-Design.

V.U.T.

figure_pointing_out_chart_data_150_wht_8005It was the appointed time for the ISP coaching session and both Bob and Leslie were logged on and chatting about their Easter breaks.

<Bob> OK Leslie, I suppose we had better do some actual work, which seems a shame on such a wonderful spring day.

<Leslie> Yes, I suppose so. There is actually something I would like to ask you about because I came across it by accident and it looked very pertinent to flow design … but you have never mentioned it.

<Bob> That sounds interesting. What is it?

<Leslie> V.U.T.

<Bob> Ah ha!  You have stumbled across the Queue Theorists and the Factory Physicists.  So, what was your take on it?

<Leslie> Well it all sounded very impressive. The context is I was having a chat with a colleague who is also getting into the improvement stuff and who had been to a course called “Factory Physics for Managers” – and he came away buzzing about the VUT equation … and claimed that it explained everything!

<Bob> OK. So what did you do next?

<Leslie> I looked it up of course and I have to say the more I read the more confused I got. Maybe I am just a bid dim and not up to understanding this stuff.

<Bob> Well you are certainly not dim so your confusion must be caused by something else. Did your colleague describe how the VUT equation is applied in practice?

<Leslie> Um. No, I do not remember him describing an example – just that it explained why we cannot expect to run resources at 100% utilisation.

<Bob> Well he is correct on that point … though there is a bit more to it than that.  A more accurate statement is “We cannot expect our system to be stable if there is variation and we run flow-resources at 100% utilisation”.

<Leslie> Well that sounds just like the sort of thing we have been talking about, what you call “resilient design”, so what is the problem with the VUT equation?

<Bob> The problem is that it gives an estimate of the average waiting time in a very simple system called a G/G/1 system.

<Leslie> Eh? What is a G/G/1 system?

<Bob> Arrgh … this is the can of queue theory worms that I was hoping to avoid … but as you brought it up let us grasp the nettle.  This is called Kendall’s Notation and it is a short cut notation for describing the system design. The first letter refers to the arrivals or demand and G means a general distribution of arrival times; the second G refers to the size of the jobs or the cycle time and again the distribution is general; and the last number refers to the number of parallel resources pulling from the queue.

<Leslie> OK, so that is a single queue feeding into a single resource … the simplest possible flow system.

<Bob> Yes. But that isn’t the problem.  The problem is that the VUT equation gives an approximation to the average waiting time. It tells us nothing about the variation in the waiting time.

<Leslie> Ah I see. So it tells us nothing about the variation in the size of the queue either … so does not help us plan the required space-capacity to hold the varying queue.

<Bob> Precisely.  There is another problem too.  The ‘U’ term in the VUT equation refers to utilisation of the resource … denoted by the symbol ? or rho.  The actual term is ? / (1-?) … so what happens when rho approaches one … or in practical terms the average utilisation of the resource approaches 100%?

<Leslie> Um … 1 divided by (1-1) is 1 divided by zero which is … infinity!  The average waiting time becomes infinitely long!

<Bob> Yes, but only if we wait forever – in reality we cannot and anyway – reality is always changing … we live in a dynamic, ever-changing, unstable system called Reality. The VUT equation may be academically appealing but in practice it is almost useless.

<Leslie> Ah ha! Now I see why you never mentioned it. So how do we design for resilience in practice? How do we get a handle on the behaviour of even the G/G/1 system over time?

<Bob> We use an Excel spreadsheet to simulate our G/G/1 system and we find a fit-for-purpose design using an empirical, experimental approach. It is actually quite straightforward and does not require any Queue Theory or VUT equations … just a bit of basic Excel know-how.

<Leslie> Phew!  That sounds more up my street. I would like to see an example.

<Bob> Welcome to the first exercise in ISP-2 (Flow).

Cumulative Sum

Dr_Bob_Thumbnail[Bing] Bob logged in for the weekly Webex coaching session. Leslie was not yet on line, but joined a few minutes later.

<Leslie> Hi Bob, sorry I am a bit late, I have been grappling with a data analysis problem and did not notice the time.

<Bob> Hi Leslie. Sounds interesting. Would you like to talk about that?

<Leslie> Yes please! It has been driving me nuts!

<Bob> OK. Some context first please.

<Leslie> Right, yes. The context is an improvement-by-design assignment with a primary care team who are looking at ways to reduce the unplanned admissions for elderly patients by 10%.

<Bob> OK. Why 10%?

<Leslie> Because they said that would be an operationally very significant reduction.  Most of their unplanned admissions, and therefore costs for admissions, are in that age group.  They feel that some admissions are avoidable with better primary care support and a 10% reduction would make their investment of time and effort worthwhile.

<Bob> OK. That makes complete sense. Setting a new design specification is OK.  I assume they have some baseline flow data.

<Leslie> Yes. We have historical weekly unplanned admissions data for two years. It looks stable, though rather variable on a week-by-week basis.

<Bob> So has the design change been made?

<Leslie> Yes, over three months ago – so I expected to be able to see something by now but there are no red flags on the XmR chart of weekly admissions. No change.  They are adamant that they are making a difference, particularly in reducing re-admissions.  I do not want to disappoint them by saying that all their hard work has made no difference!

<Bob> OK Leslie. Let us approach this rationally.  What are the possible causes that the weekly admissions chart is not signalling a change?

<Leslie> If there has not been a change in admissions. This could be because they have indeed reduced readmissions but new admissions have gone up and is masking the effect.

<Bob> Yes. That is possible. Any other ideas?

<Leslie> That their intervention has made no difference to re-admissions and their data is erroneous … or worse still … fabricated!

<Bob> Yes. That is possible too. Any other ideas?

<Leslie> Um. No. I cannot think of any.

<Bob> What about the idea that the XmR chart is not showing a change that is actually there?

<Leslie> You mean a false negative? That the sensitivity of the XmR chart is limited? How can that be? I thought these charts will always signal a significant shift.

<Bob> It depends on the degree of shift and the amount of variation. The more variation there is the harder it is to detect a small shift.  In a conventional statistical test we would just use bigger samples, but that does not work with an XmR chart because the run tests are all fixed length. Pre-defined sample sizes.

<Leslie> So that means we can miss small but significant changes and come to the wrong conclusion that our change has had no effect! Isn’t that called a Type 2 error?

<Bob> Yes, it is. And we need to be aware of the limitations of the analysis tool we are using. So, now you know that how might you get around the problem?

<Leslie> One way would be to aggregate the data over a longer time period before plotting on the chart … we know that will reduce the sample variation.

<Bob> Yes. That would work … but what is the downside?

<Leslie> That we have to wait a lot longer to show a change, or not. We do not want that.

<Bob> I agree. So what we do is we use a chart that is much more sensitive to small shifts of the mean.  And that is called a cusum chart. These were not invented until 30 years after Shewhart first described his time-series chart.  To give you an example, do you recall that the work-in-progress chart is much more sensitive to changes in flow than either demand or activity charts?

<Leslie> Yes, and the WIP chart also reacts immediately if either demand or activity change. It is the one I always look at first.

<Bob> That is because a WIP chart is actually a cusum chart. It is the cumulative sum of the difference between demand and activity.

<Leslie> OK! That makes sense. So how do I create and use a cusum chart?

<Bob> I have just emailed you some instructions and a few examples. You can try with your unplanned admissions data. It should only take a few minutes. I will get a cup of tea and a chocolate Hobnob while I wait.

[Five minutes later]

<Leslie> Wow! That is just brilliant!  I can see clearly on the cusum chart when the shifts happened and when I split the XmR chart at those points the underlying changes become clear and measurable. The team did indeed achieve a 10% reduction in admissions just as they claimed they had.  And I checked with a statistical test which confirmed that it is statistically significant.

<Bob> Good work.  Cusum charts take a bit of getting used to and we have be careful about the metric we are plotting and a few other things but it is a useful trick to have up our sleeves for situations like this.

<Leslie> Thanks Bob. I will bear that in mind.  Now I just need to work out how to explain cusum charts to others! I do not want to be accused of using statistical smoke-and-mirrors! I think a golf metaphor may work with the GPs.

Catalyst

everyone_has_an_idea_300_wht_12709[Bing Bong] Bob was already logged into the weekly coaching Webex when Leslie arrived: a little late.

<Bob> Hi Leslie, how has your week been?

<Leslie> Hi Bob, sorry I am a bit late. It has been a very interesting week.

<Bob> My curiosity is pricked … are you willing to share?

<Leslie> Yes indeed! First an update on the improvement project was talked about a few weeks ago.

<Bob> The call centre one?

<Leslie> Yes.  The good news is that the improvement has been sustained. It was not a flash in the pan. The chaos is gone and the calm has continued.

<Bob> That is very good to hear. And how did the team react?

<Leslie> That is one of the interesting things. They went really quiet.  There was no celebration, no cheering, no sounds of champagne corks popping.  It was almost as if they did not believe what they were seeing and they feared that if they celebrated too early they would somehow trigger a failure … or wake up from a dream.

<Bob> That is a very common reaction.  It takes a while for reality to sink in – the reality that they have changed something, that the world did not end, and that their chronic chaos has evaporated.  It is like a grief reaction … they have to mourn the loss of their disbelief. That takes time. About six weeks usually.

<Leslie> Yes, that is exactly what has happened – and I know they have now got over the surprise because the message I got this week was simply “OK, that appears to have worked exactly as you predicted it would. Will you help us solve the next impossible problem?

<Bob> Well done Leslie!  You have helped them break through the “Impossibility Barrier”.  So what was your answer?

<Leslie> Well I was really tempted to say “Of course, let me at it!” but I did not. Instead I asked a question “What specifically do you need my help to do?

<Bob> OK.  And how was that reply received?

<Leslie> They were surprised, and they said “But we could not have done this on our own. You know what to do right at the start and even with your help it took us months to get to the point where we were ready to make the change. So you can do this stuff much more quickly than we can.

<Bob> Well they are factually correct.

<Leslie> Yes I know, so I pointed out that although the technical part of the design does not take very long … that was not the problem … what slowed us down was the cultural part of the change.  And that is done now so does not need to be repeated. The next study-plan-do cycle will be much quicker and they only need me for the technical bits they have not seen before.

<Bob> Excellent. So how would you now describe your role?

<Leslie> More of a facilitator and coach with a bit of only-when-needed training thrown in.

<Bob> Exactly … and I have a label for this role … I call it a Catalyst.

<Leslie> That is interesting, why so?

<Bob> Because the definition of a catalyst fits rather well. Using the usual scientific definition, a catalyst increases the yield and rate of a chemical reaction. With a catalyst, reactions occur faster and with less energy and catalysts are not consumed, they are recycled, so only tiny amounts are required.

<Leslie> Ah yes, that feels about right.  But I am not just catalysing the reaction that produced the desired result am I?

<Bob> No. What else are you doing?

<Leslie> I am also converting some of the substrate into potential future catalysts too.

<Bob> Yes, you are. And that is what is needed for the current paradigm to shift.

<Leslie> Wow! I see that. This is powerful stuff!

<Bob> It is indeed. And the reaction you are catalysing is the combination of wisdom with ineptitude.

<Leslie> Eh? Can you repeat that again. Wisdom and ineptitude? Those are not words that I hear very often. I hear words like dumb, stupid, ignorant, incompetent and incapable. What is the reason you use those words?

<Bob> Simply because the dictionary definitions fit. Ineptitude means not knowing what to do to get the result we want, which is not the same as just not knowing stuff or not having the necessary skills.  What we need are decisions which lead to effective actions and to intended outcomes. Wise decisions. If we demonstrate ineptitude we reveal that we lack the wisdom to make those effective decisions.  So we need to combine ineptitude with wisdom to get the capability to achieve our purpose.

<Leslie> But why use the word “wisdom”? Why not just “knowledge”?

<Bob> Because knowledge is not enough.  Knowledge just implies that I recognise what I am seeing. “I know this. I have seen it before“.  Appreciating the implication of what I recognise is something more … it is called “understanding”.

<Leslie> Ah! I know this. I have seen this before. I know what a time-series chart is and I know how to create one but it takes guidance, time and practice to understand the implications of what the chart is saying about the system.  But where does wisdom fit?

<Bob>Understanding is past-focussed. We understand how we got to where we are in the present. We cannot change the past so understanding has nothing to do with wise decisions or effective actions or intended outcomes. It is retrospection.

<Leslie> So wisdom is future-focussed. It is prospective. It is the ability to predict the outcome of an action and that ability is necessary to make wise decisions. That is why wisdom is the antidote to ineptitude!

<Bob> Well put! And that is what you did long before you made the change in the call centre … you learned how to make reliable predictions … and the results have confirmed yours was a wise decision.  They got their intended outcome. You are not inept.

<Leslie> Ah! Now I understand the difference. I am a catalyst for improvement because I am able to diagnose and treat ineptitude. That is what you did for me. You are a catalyst.

<Bob> Welcome to the world of the Improvement Science Practitioner.  You have earned your place.


Atul_GawandeThe word “ineptitude” is coined by Dr Atul Gawande in the first of the 2014 Reith Lectures entitled “Why Do Doctors Fail?“.

Click HERE to listen to his first lecture (30 minutes).

In his second lecture he describes how it is the design of the system that delivers apparently miraculous outcomes.  It is the way that the parts work together and the attention to context and to detail that counts.

Click HERE to hear his second lecture  “The Century of the System” (30 minutes).

And Atul has a proven track record in system improvement … he is the doctor-surgeon-instigator of the WHO Safer Surgery Check List – a simple idea borrowed from aviation that is now used worldwide and is preventing 1000’s of easily avoidable deaths during and after surgery.

Click HERE to hear his third lecture  “The Problem of Hubris” (30 minutes).

Click HERE to hear his fourth lecture  “The Idea of Wellbeing” (30 minutes).


Seeing and Believing

Flow_Science_Works[Beep] It was time again for the weekly Webex coaching session. Bob dialled into the teleconference to find Leslie already there … and very excited.

<Leslie> Hi Bob, I am so excited. I cannot wait to tell you about what has happened this week.

<Bob> Hi Leslie. You really do sound excited. I cannot wait to hear.

<Leslie> Well, let us go back a bit in the story.  You remember that I was really struggling to convince the teams I am working with to actually make changes.  I kept getting the ‘Yes … but‘ reaction from the sceptics.  It was as if they were more comfortable with complaining.

<Bob> That is the normal situation. We are all very able to delude ourselves that what we have is all we can expect.

<Leslie> Well, I listened to what you said and I asked them to work through what they predicted could happen if they did nothing.  Their healthy scepticism then worked to build their conviction that doing nothing was a very dangerous choice.

<Bob> OK. And I am guessing that insight was not enough.

<Leslie> Correct.  So then I shared some examples of what others had achieved and how they had done it, and I started to see some curiosity building, but no engagement still.  So I kept going, sharing stories of ‘what’, and ‘how’.  And eventually I got an email saying “We have thought about what you said about a one day experiment and we are prepared to give that a try“.

<Bob> Excellent. How long ago was that?

<Leslie> Three months. And I confess that I was part of the delay.  I was so surprised that they said ‘OK‘ that I was not ready to follow on.

<Bob> OK. It sounds like you did not really believe it was possible either. So what did you do next?

<Leslie> Well I knew for sure that we would only get one chance.  If the experiment failed then it would be Game Over. So I needed to know before the change what the effect would be.  I needed to be able to predict it accurately. I also needed to feel reassured enough to take the leap of faith.

<Bob> Very good, so did you use some of your ISP-2 skills?

<Leslie> Yes! And it was a bit of a struggle because doing it in theory is one thing; doing it in reality is a lot messier.

<Bob> So what did you focus on?

<Leslie> The top niggle of course!  At St Elsewhere® we have a call-centre that provides out-of-office-hours telephone advice and guidance – and it is especially busy at weekends.  We are required to answer all calls quickly, which we do, and then we categorise them into ‘urgent’  and ‘non-urgent’ and pass them on to the specialists.  They call the clients back and provide expert advice and guidance for their specific problem.

<Bob>So you do not use standard scripts?

<Leslie> No, that does not work. The variety of the problems we have to solve is too wide. And the specialist has to come to a decision quite quickly … solve the problem over the phone, arrange a visit to an out of hours clinic, or to dispatch a mobile specialist to the client immediately.

<Bob> OK. So what was the top niggle?

<Leslie> We have contractual performance specifications we have to meet for the maximum waiting time for our specialists to call clients back; and we were not meeting them.  That implied that we were at risk of losing the contract and that meant loss of revenue and jobs.

<Bob> So doing nothing was not an option.

<Leslie> Correct. And asking for more resources was not either … the contract was a fixed price one. We got it because we offered the lowest price. If we employed more staff we would go out of business.  It was a rock-and-a-hard-place problem.

<Bob> OK.  So if this was ranked as your top niggle then you must have had a solution in mind.

<Leslie> I had a diagnosis.  The Vitals Chart© showed that we already had enough resources to do the work. The performance failure was caused by a scheduling policy – one that we created – our intuitively-obvious policy.

<Bob> Ah ha! So you suggested doing something that felt counter-intuitive.

<Leslie> Yes. And that generated all the ‘Yes .. but‘  discussion.

<Bob> OK. Do you have the Vitals Chart© to hand? Can you send me the Wait-Time run chart?

<Leslie> Yes, I expected you would ask for that … here it is.

StE_CallCentre_Before<Bob> OK. So I am looking at the run chart of waiting time for the call backs for one Saturday, and it is in call arrival order, and the blue line is the maximum allowed waiting time is that correct?

<Leslie>Yup. Can you see the diagnosis?

<Bob> Yes. This chart shows the classic pattern of ‘prioritycarveoutosis’.  The upper border is the ‘non-urgents’ and the lower group are the ‘urgents’ … the queue jumpers.

<Leslie> Spot on.  It is the rising tide of non-urgent calls that spill over the specification limit.  And when I shared this chart the immediate reaction was ‘Well that proves we need more capacity!

<Bob> And the WIP chart did not support that assertion.

<Leslie> Correct. It showed we had enough total flow-capacity already.

<Bob> So you suggested a change in the scheduling policy would solve the problem without costing any money.

<Leslie> Yes. And the reaction to that was ‘That is impossible. We are already working flat out. We need more capacity because to work quicker will mean cutting corners and it is unsafe to cut-corners‘.

<Bob> So how did you get around that invalid but widely held belief?

<Leslie> I used one of the FISH techniques. I got a few of them to play a table top game where we simulated a much simpler process and demonstrated the same waiting time pattern on a hand-drawn run chart.

<Bob> Excellent.  Did that get you to the ‘OK, we will give it a go for one day‘ decision.

<Leslie>Yes. But then I had to come up with a new design and I had test it so I know it would work.

<Bob> Because that was a step too far for them. And It sounds like you achieved that.

<Leslie> Yes.  It was tough though because I knew I had to prove to myself I could do it. If I had asked you I know what you would have said – ‘I know you can do this‘.  And last Saturday we ran the ‘experiment’. I was pacing up and down like an expectant parent!

<Bob> I expect rather like the ESA team who have just landed Rosetta’s little probe-child on an asteroid travelling at 38,000 miles per hour, billions of miles from Earth after a 10 year journey through deep space!  Totally inspiring stuff!

<Leslie> Yes. And that is why I am so excited because OUR DESIGN WORKED!  Exactly as predicted.

<Bob> Three cheers for you!  You have experienced that wonderful feeling when you see the effect of improvement-by-design with your own eyes. When that happens then you really believe what opportunities become possible.

<Leslie> So I want to show you the ‘after’ chart …

StE_CallCentre_After

<Bob> Wow!  That is a spectacular result! The activity looks very similar, and other than a ‘blip’ between 15:00 and 19:00 the prioritycarveoutosis has gone. The spikes have assignable causes I assume?

<Leslie> Spot on again!  The activity was actually well above average for a Saturday.  The subjective feedback was that the new design felt calm and under-control. The chaos had evaporated.  The performance was easily achieved and everyone was very positive about the whole experience.  The sceptics were generous enough to say it had gone better than they expected.  And yes, I am now working through the ‘spikes’ and excluding them … but only once I have a root cause that explains them.

<Bob> Well done Leslie! I sense that you now believe what is possible whereas before you just hoped it would be.

<Leslie> Yes! And the most important thing to me is that we did it ourselves. Which means improvement-by-design can be learned. It is not obvious, it feels counter-intuitive, so it is not easy … but it works.

<Bob> Yes. That is the most important message. And you have now earned your ISP Certificate of Competency.

Strength and Resilience

figure_breaking_through_wall_anim_150_wht_15036The dictionary definition of resilience is “something that is capable of  returning to its original shape after being stretched, bent or otherwise deformed“.

The term is applied to inanimate objects, to people and to systems.

A rubber ball is resilient … it is that physical property that gives it bounce.

A person is described as resilient if they are able to cope with stress without being psychologically deformed in the process.  Emotional resilience is regarded as an asset.

Systems are described as resilient when they are able to cope with variation without failing. And this use of the term is associated with another concept: strength.

Strong things can withstand a lot of force before they break. Strength is not the same as resilience.

Engineers use another term – strain – which means the amount of deformation that happens when a force is applied.

Stress is the force applied, strain is the deformation that results.

So someone who is strong and resilient will not buckle under high pressure and will absorb variation – like the suspension of you car.

But is strength-and-resilience always an asset?


Suppose some strong and resilient people finds themselves in a relentlessly changing context … one in which they actually need to adapt and evolve to survive in the long term.

How well does their highly valued strength-and-resilience asset serve them?

Not very well.

They will resist the change – they are resilient – and they will resist it for a long time – they are strong.

But the change is relentless and eventually the limit of their strength will be reached … and they snap!

And when that happens all the stored energy is suddenly released. So they do not just snap – they explode!

Just like the wall in the animation above.

The final straw that triggers the sudden failure may appear insignificant … and at any other time  it would be.

But when the pressure is really on and the system is at the limit then it can be just enough to trigger the catastrophic failure from which there is no return.


Social systems behave in exactly the same way.

Those that have demonstrated durability are both strong and resilient – but in a relentlessly changing context even they will fail eventually, and when they do the collapse is sudden and catastrophic.

Structural engineers know that catastrophic failure usually starts as a localised failure and spreads rapidly through the hyper-stressed structure; each part failing in sequence as it becomes exposed and exceeds the limit of its strength.  That is how the strong and resilient Twin Towers failed and fell on Sept 11th 2001. They were not knocked over. They were weakened to the point of catastrophic failure.

When systems are exposed to varying strains then these localised micro-fractures only occur at the peaks of stress and may not have time to spread very far. The damage is done though. The system is a bit weaker than it was before. And catastrophic failure is more likely in the future.

That is what caused the sudden loss of some of the first jet airliners which inexplicably just fell out of the sky on otherwise uneventful flights.  It took a long time for the root cause to be uncovered … the square windows.

Jet airliners fly at high altitude because it allows higher speeds and requires less fuel and so allows long distance flight over wide oceans, steppes, deserts and icecaps. But the air pressure is low at high altitude and passengers could not tolerate that; so the air pressure inside an airliner at high altitude is much higher than outside. It is a huge pressurised metal flying cannister.  And as it goes up and down the thin metal skin is exposed to high variations in stress which a metal tube can actually handle rather well … until we punch holes in it to fit windows to allow our passengers a nice view of the clouds outside.  We are used to square windows in our houses (because they are easier to make) so the original aircraft engineers naturally put square windows in the early airliners.  And that is where the problem arose … the corners of the windows concentrate the stress and over time, with enough take-offs and landings,  the metal skin at the corners of the windows will accumulate invisible micro-fractures. The metal actually fatigues. Then one day – pop – a single rivet at the corner of a square window fails and triggers the catastrophic failure of the whole structure. But the aircraft designers did not understand that process and it took quite a long time to diagnose the root cause.

The solution?

A more resilient design – use round-cornered windows that dissipate the strain rather than concentrate it.  It was that simple!


So what is the equivalent resilient design for social system? Adaptability.

But how it is possible for a system to be strong, resilient and adaptable?

The design trick is to install “emotional strain gauges” that indicate when and where the internal cultural stress is being concentrated and where the emotional strain shows first.

These emotometers will alert us to where the stresses and strains are being felt strongest and most often – rather like pain detectors. We use the patterns of information from our network of emotometers to help us focus our re-design attention to continuously adapt parts of our system to relieve the strain and to reduce the system wide risk of catastrophic failure.

And by installing emotometers across our system we will move towards a design that is strong, resilient and that continuously adapts to a changing environment.

It really is that simple.

Welcome to complex adaptive systems engineering (CASE).

A Sisyphean Nightmare

cardiogram_heart_signal_150_wht_5748[Beep] It was time for the weekly e-mentoring session so Bob switched on his laptop, logged in to the virtual meeting site and found that Lesley was already there.

<Bob> Hi Lesley. What shall we talk about today?

<Lesley> Hello Bob. Another old chestnut I am afraid. Queues.  I keep hitting the same barrier where people who are fed up with the perpetual queue chaos have only one mantra “If you want to avoid long waiting times then we need more capacity.

<Bob> So what is the problem? You know that is not the cause of chronic queues.

<Lesley> Yes, I know that mantra is incorrect – but I do not yet understand how to respectfully challenge it and how to demonstrate why it is incorrect and what the alternative is.

<Bob> OK. I understand. So could you outline a real example that we can work with.

<Lesley> Yes. Another old chestnut: the Emergency Department 4-hour breaches.

<Bob> Do you remember the Myth of Sisyphus?

<Leslie> No, I do not remember that being mentioned in the FISH course.

<Bob> Ho ho! No indeed,  it is much older. In Greek mythology Sisyphus was a king of Ephyra who was punished by the Gods for chronic deceitfulness by being compelled to roll an immense boulder up a hill, only to watch it roll back down, and then to repeat this action forever.

Sisyphus_Cartoon

<Lesley> Ah! I see the link. Yes, that is exactly how people in the ED feel.  Everyday it feels like they are pushing a heavy boulder uphill – only to have to repeat the same labour the next day. And they do not believe it can ever be any better with the resources they have.

<Bob> A rather depressing conclusion! Perhaps a better metaphor is the story in the film  “Ground Hog Day” where Bill Murray plays the part of a rather arrogant newsreader who enters a recurring nightmare where the same day is repeated, over and over. He seems powerless to prevent it.  He does eventually escape when he learns the power of humility and learns how to behave differently.

<Lesley> So the message is that there is a way out of this daily torture – if we are humble enough to learn the ‘how’.

<Bob> Well put. So shall we start?

<Lesley> Yes please!

<Bob> OK. As you know very well it is important not to use the unqualified term ‘capacity’.  We must always state if we are referring to flow-capacity or space-capacity.

<Lesley> Because they have different units and because they are intimately related to lead time by Little’s Law.

<Bob> Yes.  Little’s Law is mathematically proven Law of flow physics – it is not negotiable.

<Lesley> OK. I know that but how does it solve problem we started with?

<Bob> Little’s Law is necessary but it is not sufficient. Little’s Law relates to averages – and is therefore just the foundation. We now need to build the next level of understanding.

<Lesley> So you mean we need to introduce variation?

<Bob> Yes. And the tool we need for this is a particular form of time-series chart called a Vitals Chart.

<Lesley> And I am assuming that will show the relationship between flow, lead time and work in progress … over time ?

<Bob> Exactly. It is the temporal patterns on the Vitals Chart that point to the root causes of the Sisyphean Chaos. The flow design flaws.

<Lesley> Which are not lack of flow-capacity or space-capacity.

<Bob> Correct. If the chaos is chronic then there must already be enough space-capacity and flow-capacity. Little’s Law shows that, because if there were not the system would have failed completely a long time ago. The usual design flaw in a chronically chaotic system is one or more misaligned policies.  It is as if the system hardware is OK but the operating software is not.

<Lesley> So to escape from the Sisyphean Recurring ED 4-Hour Breach Nightmare we just need enough humility and enough time to learn how to diagnose and redesign some of our ED system operating software? Some of our own policies? Some of our own mantras?

<Bob> Yup.  And not very much actually. Most of the software is OK. We need to focus on the flaws.

<Lesley> So where do I start?

<Bob> You need to do the ISP-1 challenge that is called Brainteaser 104.  That is where you learn how to create a Vitals Chart.

<Lesley> OK. Now I see what I need to do and the reason:  understanding how to do that will help me explain it to others. And you are not going to just give me the answer.

<Bob> Correct. I am not going to just give you the answer. You will not fully understand unless you are able to build your own Vitals Chart generator. You will not be able to explain the how to others unless you demonstrate it to yourself first.

<Lesley> And what else do I need to do that?

<Bob> A spreadsheet and your raw start and finish event data.

<Lesley> But we have tried that before and neither I nor the database experts in our Performance Department could work out how to get the real time work in progress from the events – so we assumed we would have to do a head count or a bed count every hour which is impractical.

<Bob> It is indeed possible as you are about to discover for yourself. The fact that we do not know how to do something does not prove that it is impossible … humility means accepting our inevitable ignorance and being open to learning. Those who lack humility will continue to live the Sisyphean Nightmare of ED Ground Hog Day. The choice to escape is ours.

<Lesley> I choose to learn. Please send me BT104.

<Bob> It is on its way …

The Jigsaw

6MDesignJigsawSystems are made of interdependent parts that link together – rather like a jigsaw.

If pieces are distorted, missing, or in the wrong place then the picture is distorted and the system does not work as well as it could.

And if pieces of one jigsaw are mixed up with those of another then it is even more difficult to see any clear picture.

A system of improvement is just the same.

There are many improvement jigsaws each of which have pieces that fit well together and form a synergistic whole. Lean, Six Sigma, and Theory of Constraints are three well known ones.

Each improvement jigsaw evolved in a different context so naturally the picture that emerges is from a particular perspective: such as manufacturing.

So when the improvement context changes then the familiar jigsaws may not work as well: such as when we shift context from products to services, and from commercial to public.

A public service such as healthcare requires a modified improvement jigsaw … so how do we go about getting that?


One way is to ‘evolve’ an old jigsaw into a new context. That is tricky because it means adding new pieces and changing old pieces and the ‘zealots’ do not like changing their familiar jigsaw so they resist.

Another way is to ‘combine’ several old jigsaws in the hope that together they will provide enough perspectives. That is even more tricky because now you have several tribes of zealots who resist having their familiar jigsaws modified.

What about starting with a blank canvas and painting a new picture from scratch? Well it is actually very difficult to create a blank canvas for learning because we cannot erase what we already know. Our current mental model is the context we need for learning new knowledge.


So what about using a combination of the above?

What about first learning a new creative approach called design? And within that framework we can then create a new improvement jigsaw that better suits our specific context using some of the pieces of the existing ones. We may need to modify the pieces a bit to allow them to fit better together, and we may need to fashion new pieces to fill the gaps that we expose. But that is part of the fun.


6MDesignJigsawThe improvement jigsaw shown here is a new hybrid.

It has been created from a combination of existing improvement knowledge and some innovative stuff.

Pareto analysis was described by Vilfredo Pareto over 100 years ago.  So that is tried and tested!

Time-series charts were invented by Walter Shewhart almost 100 years ago. So they are tried and tested too!

The combination of Pareto and Shewhart tools have been used very effectively for over 50 years. The combination is well proven.

The other two pieces are innovative. They have different parents and different pedigrees. And different purposes.

The Niggle-o-Gram® is related to 2-by-2, FMEA and EIQ and the 4N Chart®.  It is the synthesis of them that creates a powerful lens for focussing our improvement efforts on where the greatest return-on-investment will be.

The Right-2-Left Map® is a descendent of the Design family and has been crossed with Graph Theory and Causal Network exemplars to introduce their best features.  Its purpose is to expose errors of omission.

The emergent system is synergistic … much more effective than each part individually … and more even than their linear sum.


So when learning this new Science of Improvement we have to focus first on learning about the individual pieces and we do that by seeing examples of them used in practice.  That in itself is illuminating!

As we learn about more pieces a fog of confusion starts to form and we run the risk of mutating into a ‘tool-head’.  We know about the pieces in detail but we still do not see the bigger picture.

To avoid the tool-head trap we must balance our learning wheel and ensure that we invest enough time in learning-by-doing.

Then one day something apparently random will happen that triggers a ‘click’.  Familiar pieces start to fit together in a unfamiliar way and as we see the relationships, the sequences, and the synergy – then a bigger picture will start to emerge. Slowly at first and then more quickly as more pieces aggregate.

Suddenly we feel a big CLICK as the final pieces fall into place.  The fog of confusion evaporates in the bright sunlight of a paradigm shift in our thinking.

The way forward that was previously obscured becomes clearly visible.

Ah ha!

And we are off on the next stage  of our purposeful journey of improvement.