Systemic Sickness

Sickness, illness, ill health, unhealthy, disease, disorder, distress are all words that we use when how we feel falls short of how we expect to feel. The words impliy an illness continuum and each of us appeara to use different thresholds as action alerts.

 The first is crossed when we become aware that all is not right and our response and to enter a self-diagnosis and self-treatment mindset. This threshold is context-dependent; we use external references to detect when we have strayed too far from the norm – we compare ourselves with others. This early warning system works most of the time – after all chemists make their main business from over the counter (OTC) remedies!

If the first stage does not work we cross the second threshold when we accept that we need expert assistance and we switch into a different mode of thinking – the “sick role”.  Crossing the second threshold is a big psychological step that implies a perceived loss of control and power – and explains why many people put off seeking help. They enter a phase of denial, self-deception and self-justification which can be very resistant to change.

The same is true of organisations – when they become aware that they are performing below expectation then a “self-diagnosis” and “self-treatment” is instigated, except that it is called something different such as an “investigation” or “root cause analysis” and is followed by a “recommendations” and an “action plan”.  The requirements for this to happen are an ability to become aware of a problem and a capability to understand and address the root cause both effectively and efficiently.  This is called dynamic stability or “homeostasis” and is a feature of many systems.  The image of a centrifugal governor is a good example – it was one of the critical innovations that allowed the power of steam to be harnessed safely a was a foundation stone of the industrial revolution. The design is called a negative feedback stabiliser and it has a drawback – there may be little or no external sign of the effort required to maintain the stability.

Problems arise when parts of this expectation-awareness-feedback-adjustment process are missing, do not work, or become disconnected. If there is an unclear expectation then it is impossible to know when and how to react. Not being clear what “healthy” means leads to confusion. It is too easy to create a distorted sense of normality by choosing a context where everyone is the same as you – “birds of a feather flock together”.

Another danger is to over-simplify the measure of health and to focus on one objective dimension – money – with the assumption that if the money is OK then the system must be OK.  This is an error of logic because although a healthy system implies healthy finances, the reverse is not the case – a business can be both making money and heading for disaster.

Failure can also happen if the most useful health metrics are not measured, are measured badly, or are not communicated in a meaningful way.  Very often metrics are not interpreted in context, not tracked over time, and not compared with the agreed expectation of health.  These multiple errors of omission lead to conterproductive behaviour such as the use of delusional ratios and arbitrary targets (DRATs), short-termism and “chasing the numbers” – all of which can further erode the underlying health of the system – like termites silently eating the foundations of your house. By the time you notice it is too late – the foundations have crumbled into dust!

To achieve and maintain systemic health it is necessary to include the homeostatic mechanisms at the design stage. Trying to add or impose the feedback functions afterwards is less effective and less efficient.  A healthy system is desoigned with sensitive feedback loops that indicate the effort required to maintain dynamic stablity – and if that effort is increasing then that alone is cause for further investigation – often long before the output goes out of specification.  Healthy systems are economic and are designed to require a minimum of effort to maintain stability and sustain performance – good design feels effortless compared with poor design. A system that only detects and reacts to deviations in outputs is an inferior design – it is like driving by looking in the rear-view mirror!

Healthy systems were designed to be healthy from the start or have evolved from unhealthy ones – the books by Jim Collins describes this: “Built to Last” describes organisations that have endured because they were destined to be great from the start. “Good to Great”  describes organisations that have evolved from unremarkable performers into great performers. There is a common theme to great companies irrespective of their genesis – data, information, knowledge, understanding and most important of all a wise leader.

The Ten Billion Barrier

I love history – not the dry boring history of learning lists of dates – the inspiring history of how leaps in understanding happen after decades of apparently fruitless search.  One of the patterns that stands out for me in recent history is how the growth of the human population has mirrored the changes in our understanding of the Universe.  This pattern struck me as curious – given that this has happened only in the last 10,000 years – and it cannot be genetic evolution because the timescale is to short. So what has fuelled this population growth? On further investigation I discovered that the population growth is exponential rather than linear – and very recent – within the last 1000 years.  Exponential growth is a characteristic feature of a system that has a positive feedback loop in it that is not balanced by an equal and opposite negative feedback loop. So, what is being fed back into the system that is creating this unbalanced behaviour? My conclusion so far is “collective improvement in understanding”.

However, exponential growth has a dark side – it is not sustainable. At some point a negative feedback loop will exert itself – and there are two extremes to how fast this can happen: gradual or sudden. Sudden negative feedback is a shock is the one to avoid because it is usually followed by a dramatic reversal of growth which if catastrophic enough is fatal to the system.  When it is less sudden and less severe it can lead into repeating cycles  of growth and decline – boom and bust – which is just a more painful path to the same end.  This somewhat disquieting conclusion led me to conduct the thought experiment that is illustrated by the diagram: If our growth is fuelled by our ability to learn, to use and to maintain our collective knowledge what changes in how we do this must have happened over the last 1000 years?  Biologically we are social animals and using our genetic inheritance we seem only able to maintain about 100 active relationships – which explains the natural size of family groups where face-to-face communication is paramount.  To support a stable group that is larger than 100 we must have developed learned behaviours and social structures. History tells us that we created communities by differentiating into specialised functions and to be stable these were cooperative rather than competitive and the natural multiplier seems to be about 100.  A community with more than 10,000 people is difficult to sustain with an ad hoc power structure with a powerful leader and we develop collective “rules” and a more democratic design – which fuels another 100 fold expansion to 1 million – the order of magnitide of a country or city. Multiply by 100 again and we get the size that is typical of a country and the social structures required to achieve stablity on this scale are different again – we needed to develop a way of actively seeking new knowledge, continuously re-writing the rule books, and industrialising our knowkedge. This has only happened over the last 300 years.  The next multipler takes us to Ten Billion – the order of magnitude of the current global population – and it is at this stage that  our current systems seem to be struggling again.

From this geometric perspective we appear to be approaching a natural human system barrier that our current knowledge management methods seem inadequate to dismantle – and if we press on in denial then we face the prospect of a sudden and catastrophic change – for the worse. Regression to a bygone age would have the same effect because those systems are not designed to suport the global economy.

So, what would have to change in the way we manage our collective knowledge that would avoid a Big Crunch and would steer us to a stable and sustainable future?

Disruptive Innovation

Africa is a fascinating place.  According to a documentary that I saw last year we are ALL descended from a small tribe who escaped from North East Africa about 90,000 years ago. Our DNA carries clues to the story of our journey and it shows that modern man (Africans, Europeans, Asians, Chinese, Japanese, Australians, Americans, Russians etc) – all come from a common stock. It is salutory to reflect how short this time scale is, how successful this tribe has been in replacing all the other branches of the human evolutionary tree, and how the genetic differences between colours and creeds are almost insignificant.  All the evolution that has happened in the last 90,000 years that has transformed the world and the way we live is learned behaviour. This means that, unlike our genes, it is possible to turn the clock backwards 90,000 years in just one generation. To avoid this we need to observe how the descendents of the original tribe learned to do many new things – forced by their new surroundings to adapt or perish.  This is essence of Improvement Science – changing context continuously creates new challenges – from which we can learn, adapt and flourish.

To someone born in rural England a mobile phone appears to be a relatively small step on a relentless technological evolution – to someone born in rural Africa it is a radical and world-changing paradigm shift – one that has already changed their lives.  In some parts of Africa money is now managed using mobile phones and this holds the promise of bypassing the endemic bureaucratic and corrupt practices that so often strangle the greens shoots of innovation and improvement. Information and communication is the lifeblood of improvement and to introduce a communication technology that is reliable, effective, and affordable into a vast potential for cultural innovation is rather like introducing a match to the touchpaper of a firework. Once the fuse has started to fizz there is no going back. The name given to this destabilising phenomenon is “disruptive innovation” and fortunately it can work for the good of all – so long as we steer it in a win-win-win direction. And that is a big challenge because our history suggests that we find exploitation easier than evolution and exploitation always leads to lose-lose-lose outcomes.

So while our global tribe may have learned enough to create a global phone system we still have much to learn about how to create a global social system.

Small Step or Giant Leap?

This iconic image of Earthrise over the Moonscape reveals the dynamic complexity of the living Earth contrasting starkly with the static simplicity of the dead Moon. The feeling of fragility that this picture evokes sounds a warning bell for us – “Death is Irreversible and Life is not Inevitable”. In reality this image was a small technical step that created a giant cultural leap.

And so it is with much of Improvement Science – the perception of the size of the challenge changes once the challenge is overcome. With the benefit of hindsight it was easy, even obvious – but with only the limit of foresight it looked difficult and obscure.  Our ability to challenge, learn and adopt a new perspective is the source of much gain and much pain. We gain the excitement of new understanding and we feel the pain of being forced to face our old ignorance.  Many of us deny ourselves the gain because we cannot face the pain – but it does not have to be that way. We have a tendency to store the pain up until we are forced to face it – and by this means we create what feel like insurmountable barriers to improvement.  There is an alternative – bite sized improvement – taking small steps towards a realistic goal that is on a path to our distant objective.  The small-step method has many advantages – we can do things that matter to us and are within our circle of influence; we can learn and practice the skills in safety; and we can start immediately.

In prospect it will feel like a giant leap and in retrospect it will look like a small step – that is the way of Improvement Science – and as our confidence and curiosity grow we take bigger steps and make smaller leaps.  

Synigence

The “Qualigence, Quantigence and Synergence” blopic has generated some interesting informal feedback and since being more attuned to this concept I have seen evidence of it at work in practice. My own reflection is that synergence does not quite hit the spot because syn-erg-gence can be translated as “knowing how to work together” and from this small niggle a new word was born – synigence – which I feel captures the concept better. It is an improvement. 

Improvement Science always considers a challenge from three perspectives – quality, delivery and quantity. The delivery dimension involves time and can be viewed both qualitatively and quantitatively.  The pure qualitative dimension is the subjective experience (feelings) and the pure quanitative dimension is the objective evidence (facts) – very often presented in the Universal Language of Money (ULM). The diagram attempts to capture this idea of three perspectives and that there is common ground between all three;  the soil in which the seeds of improvement take root. There is more to it though – this common ground/vision/goal/sense does not look the same from different perspectives and for synergy to develop the synigent facilitator needs to be capable of translating the one vision into three languages. It is rather like the Rosetta Stone an ancient Egyptian grandiorite stele inscribed with a decree issued at Memphis, Egypt in 196 BC on behalf of King Ptolemy V. The decree appears in three scripts: Ancient Egyptian hieroglyphs, Demotic Egyptian script, and Ancient Greek and, as it presents essentially the same text in all three scripts, it provided the key to the modern understanding of Egyptian hieroglyphs.  With this key the wisdom of the Ancient Egyptians was unlocked.

My learning this week is that this is less on an exercise in how to influence others and more of an exercise in how to influence oneself and by that route the sum can become greater than the parts.  Things that looked impossible for either working alone (or more often in conflict) now become not only possible but also inevitable.  Once we have seen we cannot forget – and once we believe we cannot understand that it is not obvious to everyone else: and there lurks a trap for the unsynigent – it is not obvious – if it were we would have seen it sooner ourselves.