Economy-of-Scale vs Economy-of-Flow

We_Need_Small_HospitalsThis was an interesting headline to see on the front page of a newspaper yesterday!

The Top Man of the NHS is openly challenging the current Centralisation-is-The-Only-Way-Forward Mantra;  and for good reason.

Mass centralisation is poor system design – very poor.

Q: So what is driving the centralisation agenda?

A: Money.

Or to be more precise – rather simplistic thinking about money.

The misguided money logic goes like this:

1. Resources (such as highly trained doctors, nurses and AHPs) cost a lot of money to provide.

2. So we want all these resources to be fully-utilised to get value-for-money.
[No, not all – just the most expensive].

3. So we will gather all the most expensive resources into one place to get the Economy-of-Scale.
[No, not all the most expensive – just the most specialised]

4. And we will suck /push all the work through these super-hubs to keep our expensive specialist resources busy all the time.
[No, what about the growing population of older folks who just need a bit of expert healthcare support, quickly, and close to home?]

This flawed logic confuses two complementary ways to achieve higher system productivity/economy/value-for-money without  sacrificing safety:

Economies of Scale (EoS) and Economies of Flow (EoF).

Of the two the EoF is the more important because by using EoF principles we can increase productivity in huge leaps at almost no cost; and without causing harm and disappointment. EoS are always destructive.

But that is impossible. You are talking rubbish … because if it were possible we would be doing it!

It is not impossible and we are doing it … but not at scale and pace in healthcare … and the reason for that is we are not trained in Economy-of-Flow methods.

And those who are trained and who have have experienced the effects of EoF would not do it any other way.


In a recent EoF exercise an ISP (Improvement Science Practitioner) helped a surgical team to increase their operating theatre productivity by 30% overnight at no cost.  The productivity improvement was measured and sustained for most of the last year. [it did dip a bit when the waiting list evaporated because of the higher throughput, and again after some meddlesome middle management madness was triggered by end-of-financial-year target chasing].  The team achieved the improvement using Economy of Flow principles and by re-designing some historical scheduling policies. The new policies  were less antagonistic. They were designed to line the ducks up and as a result the flow improved.

So the specific issue of  Super Hospitals vs Small Hospitals is actually an Economy of Flow design challenge.

But there is another critical factor to take into account.


Medicine has become super-specialised for a simple reason: it is believed that to get ‘good enough’ at something you have to have a lot of practice. And to get the practice you have to have high volumes of the same stuff – so you need to specialise and then to sort undifferentiated work into separate ‘speciologist’ streams or sequence the work through separate speciologist stages.

Generalists are relegated to second-class-citizen status; mere tripe-skimmers and sign-posters.

Specialisation is certainly one way to get ‘good enough’ at doing something … but it is not the only way.

Another way to learn the key-essentials from someone who already knows (and can teach) and then to continuously improve using feedback on what works and what does not – feedback from everywhere.

This second approach is actually a much more effective and efficient way to develop expertise – but we have not been taught this way.  We have only learned the scrape-the-burned-toast-by-suck-and-see method.

We need to experience another way.

We need to experience rapid acquisition of expertise!

And being able to gain expertise quickly means that we can become expert generalists.

There is good evidence that the broader our skill-set the more resilient we are to change, and the more innovative we are when faced with novel challenges.

In the Navy of the 1800’s sailors were “Jacks of All Trades and Master of One” because if only one person knew how to navigate and they got shot or died of scurvy the whole ship was doomed.  Survival required resilience and that meant multi-skilled teams who were good enough at everything to keep the ship afloat – literally.

Specialisation has another big drawback – it is very expensive and on many dimensions. Not just Finance.


Suppose we have six-step process and we have specialised to the point where an individual can only do one step to the required level of performance (safety/flow/quality/productivity).  The minimum number of people we need is six and the process only flows when we have all six people. Our minimum costs are high and they do not scale with flow.

If any one of the six are not there then the whole process stops. There is no flow.  So queues build up and smooth flow is sacrificed.

Out system behaves in an unstable and chaotic feast-or-famine manner and rapidly shifting priorities create what is technically called ‘thrashing’.

And the special-six do not like the constant battering.

And the special-six have the power to individually hold the whole system to ransom – they do not even need to agree.

And then we aggravate the problem by paying them the high salary that it is independent of how much they collectively achieve.

We now have the perfect recipe for a bigger problem!  A bunch of grumpy, highly-paid specialists who blame each other for the chaos and who incessantly clamour for ‘more resources’ at every step.

This is not financially viable and so creates the drive for economy-of-scale thinking in which to get us ‘flow resilience’ we need more than one specialist at each of the six steps so that if one is on holiday or off sick then the process can still flow.  Let us call these tribes of ‘speciologists’ there own names and budgets, and now we need to put all these departments somewhere – so we will need a big hospital to fit them in – along with the queues of waiting work that they need.

Now we make an even bigger design blunder.  We assume the ‘efficiency’ of our system is the same as the average utilisation of all the departments – so we trim budgets until everyone’s utilisation is high; and we suck any-old work in to ensure there is always something to do to keep everyone busy.

And in so doing we sacrifice all our Economy of Flow opportunities and we then scratch our heads and wonder why our total costs and queues are escalating,  safety and quality are falling, the chaos continues, and our tribes of highly-paid specialists are as grumpy as ever they were!   It must be an impossible-to-solve problem!

Now contrast that with having a pool of generalists – all of whom are multi-skilled and can do any of the six steps to the required level of expertise.  A pool of generalists is a much more resilient-flow design.

And the key phrase here is ‘to the required level of expertise‘.

That is how to achieve Economy-of-Flow on a small scale without compromising either safety or quality.

Yes, there is still a need for a super-level of expertise to tackle the small number of complex problems – but that expertise is better delivered as a collective-expertise to an individual problem-focused process.  That is a completely different design.

Designing and delivering a system that that can achieve the synergy of the pool-of-generalists and team-of-specialists model requires addressing a key error of omission first: we are not trained how to do this.

We are not trained in Complex-Adaptive-System Improvement-by-Design.

So that is where we must start.


Ratio Hazards

waste_paper_shot_miss_150_wht_11853[Bzzzzz Bzzzzz] Bob’s phone was on silent but the desktop amplified the vibration and heralded the arrival of Leslie’s weekly ISP coaching call.

<Bob> Hi Leslie.  How are you today and what would you like to talk about?

<Leslie> Hi Bob.  I am well and I have an old chestnut to roast today … target-driven-behaviour!

<Bob> Excellent. That is one of my favorite topics. Is there a specific context?

<Leslie> Yes.  The usual desperate directive from on-high exhorting everyone to “work harder to hit the target” and usually accompanied by a RAG table of percentages that show just who is failing and how badly they are doing.

<Bob> OK. Red RAGs irritating the Bulls eh? Percentages eh? Have we talked about Ratio Hazards?

<Leslie> We have talked about DRATs … Delusional Ratios and Arbitrary Targets as you call them. Is that the same thing?

<Bob> Sort of. What happened when you tried to explain DRATs to those who are reacting to these ‘desperate directives’?

<Leslie> The usual reply is ‘Yes, but that is how we are required to report our performance to our Commissioners and Regulatory Bodies.’

<Bob> And are the key performance indicators that are reported upwards and outwards also being used to manage downwards and inwards?  If so, then that is poor design and is very likely to be contributing to the chaos.

<Leslie> Can you explain that a bit more? It feels like a very fundamental point you have just made.

 <Bob> OK. To do that let us work through the process by which the raw data from your system is converted into the externally reported KPI.  Choose any one of your KPIs

<Leslie> Easy! The 4-hour A&E target performance.

<Bob> What is the raw data that goes in to that?

<Leslie> The percentage of patients who breach 4-hours per day.

<Bob> And where does that ratio come from?

<Leslie> Oh! I see what you mean. That comes from a count of the number of patients who are in A&E for more than 4 hours divided by a count of the number of patients who attended.

<Bob> And where do those counts come come from?

<Leslie> We calculate the time the patient is in A&E and use the 4-hour target to label them as breaches or not.

<Bob> And what data goes into the calculation of that time?

<Leslie>The arrival and departure times for each patient. The arrive and depart events.

<Bob>OK. Is that the raw data?

<Leslie>Yes. Everything follows from that.

<Bob> Good.  Each of these two events is a time – which is a continuous metric.  In principle,  we could in record it to any degree of precision we like – milliseconds if we had a good enough enough clock.

<Leslie> Yes. We record it to an accuracy of of seconds – it is when the patient is ‘clicked through’ on the computer.

<Bob> Careful Leslie, do not confuse precision with accuracy. We need both.

<Leslie> Oops! Yes I remember we had that conversation before.

<Bob> And how often is the A&E 4-hour target KPI reported externally?

<Leslie> Quarterly. We either succeed or fail each quarter of the financial year.

<Bob> That is a binary metric. An “OK or not OK”. No gray zone.

<Leslie> Yes. It is rather blunt but that is how we are contractually obliged to report our performance.

<Bob> OK. And how many patients per day on average come to A&E?

<Leslie> About 200 per day.

<Bob> So the data analysis process is boiling down about 36,000 pieces of continuous data into one Yes-or-No bit of binary data.

<Leslie> Yes.

<Bob> And then that one bit is used to drive the action of the Board: if it is ‘OK last quarter’ then there is no ‘desperate directive’ and if it is a ‘Not OK last quarter’ then there is.

<Leslie> Yes.

<Bob> So you are throwing away 99.9999% of your data and wondering why what is left is not offering much insight in what to do.

<Leslie>Um, I guess so … when you say it like that.  But how does that relate to your phrase ‘Ratio Hazards’?

<Bob> A ratio is just one of the many ways that we throw away information. A ratio requires two numbers to calculate it; and it gives one number as an output so we are throwing half our information away.  And this is an irreversible act.  Two specific numbers will give one ratio; but that ratio can be created by an infinite number possible pairs of numbers and we have no way of knowing from the ratio what specific pair was used to create it.

<Leslie> So a ratio is an exercise in obfuscation!

<Bob> Well put! And there is an even more data-wasteful behaviour that we indulge in. We aggregate.

<Leslie> By that do you mean we summarise a whole set of numbers with an average?

<Bob> Yes. When we average we throw most of the data away and when we average over time then we abandon our ability to react in a timely way.

<Leslie>The Flaw of Averages!

<Bob> Yes. One of them. There are many.

<Leslie>No wonder it feels like we are flying blind and out of control!

<Bob> There is more. There is an even worse data-wasteful behaviour. We threshold.

<Leslie>Is that when we use a target to decide if the lead time is OK or Not OK.

<Bob> Yes. And using an arbitrary target makes it even worse.

<Leslie> Ah ha! I see what you are getting at.  The raw event data that we painstakingly collect is a treasure trove of information and potential insight that we could use to help us diagnose, design and deliver a better service. But we throw all but one single solitary binary digit when we put it through the DRAT Processor.

<Bob> Yup.

<Leslie> So why could we not do both? Why could we not use use the raw data for ourselves and the DRAT processed data for external reporting.

<Bob> We could.  So what is stopping us doing just that?

<Leslie> We do not know how to effectively and efficiently interpret the vast ocean of raw data.

<Bob> That is what a time-series chart is for. It turns the thousands of pieces of valuable information onto a picture that tells a story – without throwing the information away in the process. We just need to learn how to interpret the pictures.

<Leslie> Wow! Now I understand much better why you insist we ‘plot the dots’ first.

<Bob> And now you understand the Ratio Hazards a bit better too.

<Leslie> Indeed so.  And once again I have much to ponder on. Thank you again Bob.

The Learning Labyrinth

Minecraft There is an amazing phenomenon happening right now – a whole generation of people are learning to become system designers and they are doing it by having fun.

There is a game called Minecraft which millions of people of all ages are rapidly discovering.  It is creative, fun and surprisingly addictive.

This is what it says on the website.

“Minecraft is a game about breaking and placing blocks. At first, people built structures to protect against nocturnal monsters, but as the game grew players worked together to create wonderful, imaginative things.”

The principle is that before you can build you have to dig … you have to gather the raw materials you need … and then you have to use what you have gathered in novel and imaginative ways.  You need tools too, and you need to learn what they are used for, and what they are useless for. And the quickest way to learn the necessary survival and creative  skills is by exploring, experimenting, seeking help, and sharing your hard-won knowledge and experience with others.

The same principles hold in the real world of Improvement Science.

The treasure we are looking for is less tangible though … but no less difficult to find … unless you know where to look.

The treasure we seek is learning; how to achieve significant and sustained improvement on all dimensions.

And there is a mountain of opportunity that we can mine into. It is called Reality.

And when we do that we uncover nuggets of knowledge, jewels of understanding, and pearls of wisdom.

There are already many tunnels that have been carved out by others who have gone before us. They branch and join to form a vast cave network. A veritable labyrinth. Complicated and not always well illuminated or signposted.

And stored in the caverns is a vast treasure trove of experience we can dip into – and an even greater horde of new treasure waiting to be discovered.

But even now there there is no comprehensive map of the labyrinth. So it is easy to get confused and to get lost. Not all junctions have signposts and not all the signposts are correct. There are caves with many entrances and exits, there are blind-ending tunnels, and there are many hazards and traps for the unwary.

So to enter the Learning Labyrinth and to return safety with Improvement treasure we need guides. Those who know the safe paths and the unsafe ones. And as we explore we all need to improve the signage and add warning signs where hazards lurk.

And we need to work at the edge of knowledge  to extend the tunnels further. We need to seal off the dead-ends, and to draw and share up-to-date maps of the paths.

We need to grow a Community of Improvement Science Minecrafters.

And the first things we need are some basic improvement tools and techniques … and they can be found here.


growing_blue_vine_scrolling_down_150_wht_247New ideas need time to germinate.

And seeds need soil – so if the context is toxic the seeds will remain dormant or die.

And gardeners need to have patience.

And gardeners need to prepare.  The seeds, the soil and to nurture and nourish the green shoots of innovation.

When a seed-of-change finds itself in fertile soil it will germinate.  That is just the first step.

The fragile new shoot of improvement must be watered and protected from harm as it grows taller and gains strength-of-evidence.

The goal is for the new growth to bear its own fruit, and its own seeds which then spread the proven practice far and wide.

Experienced Improvement Science Practitioners know this.

They know that when the seeds of a proven improvement meet resistance then the cultural soil is not ready.  A few hard winters may be needed to break up the clods. Or perhaps the sharp spade of an external inspection is needed to crack through the carapace of complacency.

And competition from the worthless weeds if weak thinking is always present. The bindweed of bureaucracy saps energy and enthusiasm and hacking at it is futile. It only grows even more vigorously.  Weeds need to be approached from the  roots upwards. Without roots they will wither.

Purpose, practice, patience, preparation and persistence are the characteristics that lead to sustained success.

And when the new fruit of the improvement tree are ready and the seeds are ripe it is important not to jealously protect and store them away from harsh critique … they need to be scattered to the four winds and to have an opportunity to find fertile soil elsewhere and to establish their own colonies.

Many will not succeed.  And a few will evolve into opportunities that were never anticipated.

That is the way of innovation, germination, dissemination and evolution.

That is the way of Improvement Science.

Feel the Fear

Change is scary.

Deliberately stepping out of our comfort zones is scary.

We feel the fear – but sometimes we do it anyway. Why? How?

What we do is that we prepare and the feeling of fear becomes diluted with a feeling of excitement – and when the balance is right we do it.

So what are the tell-tale signs?

Excitement is a positive emotion – so when we imagine the future and feel excited we unconsciously smile and we feel better afterwards.  We want to share our excitement. We tell others that we are looking forward to the future.

Like birthdays, and holidays, and a new house and a new job. New stuff is exciting when WE decide we want it.

Fear comes from being forced to change and from not having the opportunity to prepare.

Fear happens when change is sprung on us unexpectedly by chance or by someone else.

Fear is a negative emotion and we feel bad afterwards so we avoid it.

So if thinking about the future is dominated by a feeling of fear then we resist and we prevaricate and we get labelled as obstructive, and difficult and cynical.

And that makes the fear worse.

So the way to make the future feel exciting is:

1. Set a clear and constant win-win-win purpose.
2. Show that it is possible by sharing examples.
3. Show that it is achievable by sharing the step-by-step process.
4. Provide the opportunity for preparation.
5. Include those that the change affects to plan their own transition.
6. Ensure that those affected know their part in the process.

And do not underestimate how long this takes and how much repetition, and listening, and explanation and respectful challenge this takes – so the sooner this starts the better.

We hear the news, we feel the fear, we build the excitement and then we do it.

That is the way of change.