The Catastrophe is Coming

Monitor_Summary


This week an interesting report was published by Monitor – about some possible reasons for the A&E debacle that England experienced in the winter of 2014.

Summary At A Glance

“91% of trusts did not  meet the A&E 4-hour maximum waiting time standard last winter – this was the worst performance in 10 years”.


So it seems a bit odd that the very detailed econometric analysis and the testing of “Ten Hypotheses” did not look at the pattern of change over the previous 10 years … it just compared Oct-Dec 2014 with the same period for 2013! And the conclusion: “Hospitals were fuller in 2014“.  H’mm.


The data needed to look back 10 years is readily available on the various NHS England websites … so here it is plotted as simple time-series charts.  These are called system behaviour charts or SBCs. Our trusted analysis tools will be a Mark I Eyeball connected to the 1.3 kg of wetware between our ears that runs ChimpOS 1.0 …  and we will look back 11 years to 2004.

A&E_Arrivals_2004-15First we have the A&E Arrivals chart … about 3.4 million arrivals per quarter. The annual cycle is obvious … higher in the summer and falling in the winter. And when we compare the first five years with the last six years there has been a small increase of about 5% and that seems to associate with a change of political direction in 2010.

So over 11 years the average A&E demand has gone up … a bit … but only by about 5%.


A&E_Admissions_2004-15In stark contrast the A&E arrivals that are admitted to hospital has risen relentlessly over the same 11 year period by about 50% … that is about 5% per annum … ten times the increase in arrivals … and with no obvious step in 2010. We can see the annual cycle too.  It is a like a ratchet. Click click click.


But that does not make sense. Where are these extra admissions going to? We can only conclude that over 11 years we have progressively added more places to admit A&E patients into.  More space-capacity to store admitted patients … so we can stop the 4-hour clock perhaps? More emergency assessment units perhaps? Places to wait with the clock turned off perhaps? The charts imply that our threshold for emergency admission has been falling: Admission has become increasingly the ‘easier option’ for whatever reason.  So why is this happening? Do more patients need to be admitted?


In a recent empirical study we asked elderly patients about their experience of the emergency process … and we asked them just after they had been discharged … when it was still fresh in their memories. A worrying pattern emerged. Many said that they had been admitted despite them saying they did not want to be.  In other words they did not willingly consent to admission … they were coerced.

This is anecdotal data so, by implication, it is wholly worthless … yes?  Perhaps from a statistical perspective but not from an emotional one.  It is a red petticoat being waved that should not be ignored.  Blissful ignorance comes from ignoring anecdotal stuff like this. Emotionally uncomfortable anecdotal stories. Ignore the early warning signs and suffer the potentially catastrophic consequences.


A&E_Breaches_2004-15And here is the corresponding A&E 4-hour Target Failure chart.  Up to 2010 the imposed target was 98% success (i.e. 2% acceptable failure) and, after bit of “encouragement” in 2004-5, this was actually achieved in some of the summer months (when the A&E demand was highest remember).

But with a change of political direction in 2010 the “hated” 4-hour target was diluted down to 95% … so a 5% failure rate was now ‘acceptable’ politically, operationally … and clinically.

So it is no huge surprise that this is what was achieved … for a while at least.

In the period 2010-13 the primary care trusts (PCTs) were dissolved and replaced by clinical commissioning groups (CCGs) … the doctors were handed the ignition keys to the juggernaut that was already heading towards the cliff.

The charts suggest that the seeds were already well sown by 2010 for an evolving catastrophe that peaked last year; and the changes in 2010 and 2013 may have just pressed the accelerator pedal a bit harder. And if the trend continues it will be even worse this coming winter. Worse for patients and worse for staff and worse for commissioners and  worse for politicians. Lose lose lose lose.


So to summarise the data from the NHS England’s own website:

1. A&E arrivals have gone up 5% over 11 years.
2. Admissions from A&E have gone up 50% over 11 years.
3. Since lowering the threshold for acceptable A&E performance from 98% to 95% the system has become unstable and “fallen off the cliff” … but remember, a temporal association does not prove causation.

So what has triggered the developing catastrophe?

Well, it is important to appreciate that when a patient is admitted to hospital it represents an increase in workload for every part of the system that supports the flow through the hospital … not just the beds.  Beds represent space-capacity. They are just where patients are stored.  We are talking about flow-capacity; and that means people, consumables, equipment, data and cash.

So if we increase emergency admissions by 50% then, if nothing else changes, we will need to increase the flow-capacity by 50% and the space-capacity to store the work-in-progress by 50% too. This is called Little’s Law. It is a mathematically proven Law of Flow Physics. It is not negotiable.

So have we increased our flow-capacity and our space-capacity (and our costs) by 50%? I don’t know. That data is not so easy to trawl from the websites. It will be there though … somewhere.

What we have seen is an increase in bed occupancy (the red box on Monitor’s graphic above) … but not a 50% increase … that is impossible if the occupancy is already over 85%.  A hospital is like a rigid metal box … it cannot easily expand to accommodate a growing queue … so the inevitable result in an increase in the ‘pressure’ inside.  We have created an emergency care pressure cooker. Well lots of them actually.

And that is exactly what the staff who work inside hospitals says it feels like.

And eventually the relentless pressure and daily hammering causes the system to start to weaken and fail, gradually at first then catastrophically … which is exactly what the NHS England data charts are showing.


So what is the solution?  More beds?

Nope.  More beds will create more space and that will relieve the pressure … for a while … but it will not address the root cause of why we are admitting 50% more patients than we used to; and why we seem to need to increase the pressure inside our hospitals to squeeze the patients through the process and extrude them out of the various exit nozzles.

Those are the questions we need to have understandable and actionable answers to.

Q1: Why are we admitting 5% more of the same A&E arrivals each year rather than delivering what they need in 4 hours or less and returning them home? That is what the patients are asking for.

Q2: Why do we have to push patients through the in-hospital process rather than pulling them through? The staff are willing to work but not inside a pressure cooker.


A more sensible improvement strategy is to look at the flow processes within the hospital and ensure that all the steps and stages are pulling together to the agreed goals and plan for each patient. The clinical management plan that was decided when the patient was first seen in A&E. The intended outcome for each patient and the shortest and quickest path to achieving it.


Our target is not just a departure within 4 hours of arriving in A&E … it is a competent diagnosis (study) and an actionable clinical management plan (plan) within 4 hours of arriving; and then a process that is designed to deliver (do) it … for every patient. Right, first time, on time, in full and at a cost we can afford.

Q: Do we have that?
A: Nope.

Q: Is that within our gift to deliver?
A: Yup.

Q: So what is the reason we are not already doing it?
A: Good question.  Who in the NHS is trained how to do system-wide flow design like this?

Storytelling

figure_turning_a_custom_page_15415

Telling a compelling story of improvement is an essential skill for a facilitator and leader of change.

A compelling story has two essential components: cultural and technical. Otherwise known as emotional and factual.

Many of the stories that we hear are one or the other; and consequently are much less effective.


Some prefer emotive language and use stories of dismay and distress to generate an angry reaction: “That is awful we must DO something about that!”

And while emotion is the necessary fuel for action,  an angry mob usually attacks the assumed cause rather than the actual cause and can become ‘mindless’ and destructive.

Those who have observed the dangers of the angry mob opt for a more reflective, evidence-based, scientific, rational, analytical, careful, risk-avoidance approach.

And while facts are the necessary informers of decision, the analytical mind often gets stuck in the ‘paralysis of analysis’ swamp as layer upon layer of increasing complexity is exposed … more questions than answers.


So in a compelling story we need a bit of both.

We need a story that fires our emotions … and … we need a story that engages our intellect.

A bit of something for everyone.

And the key to developing this compelling-story-telling skill this is to start with something small enough to be doable in a reasonable period of time.  A short story rather than a lengthy legend.

A story, tale or fable.

Aesop’s Fables and Chaucer’s Canterbury Tales are still remembered for their timeless stories.


And here is a taste of such a story … one that has been published recently for all to read and to enjoy.

A Story of Learning Improvement Science

It is an effective blend of cultural and technical, emotional and factual … and to read the full story just follow the ‘Continue’ link.

Celebrate and Share

There comes a point in every improvement journey when it is time to celebrate and share. This is the most rewarding part of the Improvement Science Practitioner (ISP) coaching role so I am going to share a real celebration that happened this week.

The picture shows Chris Jones holding his well-earned ISP-1 Certificate of Competence.  The “Maintaining the Momentum of Medicines”  redesign project is shown on the poster on the left and it is the tangible Proof of Competence. The hard evidence that the science of improvement delivers.

Chris_Jones_Poster_and_Certificate

Behind us are the A3s for one of the Welsh Health Boards;  ABMU in fact.


An A3 is a way of summarising an improvement project very succinctly – the name comes from the size of paper used.  A3 is the biggest size that will go through an A4 fax machine (i.e. folded over) and the A3 discipline is to be concise and clear at the same time.

The three core questions that the A3 answers are:
Q1: What is the issue?
Q2: What would improvement need to look like?
Q3: How would we know that a change is an improvement?

This display board is one of many in the room, each sharing a succinct story of a different improvement journey and collectively a veritable treasure trove of creativity and discovery.

The A3s were of variable quality … and that is OK and is expected … because like all skills it takes practice. Lots of practice. Perfection is not the goal because it is unachievable. Best is not the goal because only one can be best. Progress is the goal because everyone can progress … and so progress is what we share and what we celebrate.


The event was the Fifth Sharing Event in the Welsh Flow Programme that has been running for just over a year and Chris is the first to earn an ISP-1 Certificate … so we all celebrated with him and shared the story.  It is a team achievement – everyone in the room played a part in some way – as did many more who were not in the room on the day.


stick_figure_look_point_on_cliff_anim_8156Improvement is like mountain walking.

After a tough uphill section we reach a level spot where we can rest; catch our breath; take in the view; reflect on our progress and the slips, trips and breakthroughs along the way; perhaps celebrate with drink and nibble of our chocolate ration; and then get up, look up, and square up for the next uphill bit.

New territory for us.  New challenges and new opportunities to learn and to progress and to celebrate and share our improvement stories.

The Improvement Pyramid

IS_PyramidDeveloping productive improvement capability in an organisation is like building a pyramid in the desert.

It is not easy and it takes time before there is any visible evidence of success.

The height of the pyramid is a measure of the level of improvement complexity that we can take on.

An improvement of a single step in a system would only require a small pyramid.

Improving the whole system will require a much taller one.


But if we rush and attempt to build a sky-scraper on top of the sand then we will not be surprised when it topples over before we have made very much progress.  The Egyptians knew this!

First, we need to dig down and to lay some foundations.  Stable enough and strong enough to support the whole structure.  We will never see the foundations so it is easy to forget them in our rush but they need to be there and they need to be there first.

It is the same when developing improvement science capability  … the foundations are laid first and when enough of that foundation knowledge is in place we can start to build the next layer of the pyramid: the practitioner layer.


It is the the Improvement Science Practitioners (ISPs) who start to generate tangible evidence of progress.  The first success stories help to spur us all on to continue to invest effort, time and money in widening our foundations to be able to build even higher – more layers of capability -until we can realistically take on a system wide improvement challenge.

So sharing the first hard evidence of improvement is an important milestone … it is proof of fitness for purpose … and that news should be shared with those toiling in the hot desert sun and with those watching from the safety of the shade.

So here is a real story of a real improvement pyramid achieving this magical and motivating milestone.


Cumulative Sum

Dr_Bob_Thumbnail[Bing] Bob logged in for the weekly Webex coaching session. Leslie was not yet on line, but joined a few minutes later.

<Leslie> Hi Bob, sorry I am a bit late, I have been grappling with a data analysis problem and did not notice the time.

<Bob> Hi Leslie. Sounds interesting. Would you like to talk about that?

<Leslie> Yes please! It has been driving me nuts!

<Bob> OK. Some context first please.

<Leslie> Right, yes. The context is an improvement-by-design assignment with a primary care team who are looking at ways to reduce the unplanned admissions for elderly patients by 10%.

<Bob> OK. Why 10%?

<Leslie> Because they said that would be an operationally very significant reduction.  Most of their unplanned admissions, and therefore costs for admissions, are in that age group.  They feel that some admissions are avoidable with better primary care support and a 10% reduction would make their investment of time and effort worthwhile.

<Bob> OK. That makes complete sense. Setting a new design specification is OK.  I assume they have some baseline flow data.

<Leslie> Yes. We have historical weekly unplanned admissions data for two years. It looks stable, though rather variable on a week-by-week basis.

<Bob> So has the design change been made?

<Leslie> Yes, over three months ago – so I expected to be able to see something by now but there are no red flags on the XmR chart of weekly admissions. No change.  They are adamant that they are making a difference, particularly in reducing re-admissions.  I do not want to disappoint them by saying that all their hard work has made no difference!

<Bob> OK Leslie. Let us approach this rationally.  What are the possible causes that the weekly admissions chart is not signalling a change?

<Leslie> If there has not been a change in admissions. This could be because they have indeed reduced readmissions but new admissions have gone up and is masking the effect.

<Bob> Yes. That is possible. Any other ideas?

<Leslie> That their intervention has made no difference to re-admissions and their data is erroneous … or worse still … fabricated!

<Bob> Yes. That is possible too. Any other ideas?

<Leslie> Um. No. I cannot think of any.

<Bob> What about the idea that the XmR chart is not showing a change that is actually there?

<Leslie> You mean a false negative? That the sensitivity of the XmR chart is limited? How can that be? I thought these charts will always signal a significant shift.

<Bob> It depends on the degree of shift and the amount of variation. The more variation there is the harder it is to detect a small shift.  In a conventional statistical test we would just use bigger samples, but that does not work with an XmR chart because the run tests are all fixed length. Pre-defined sample sizes.

<Leslie> So that means we can miss small but significant changes and come to the wrong conclusion that our change has had no effect! Isn’t that called a Type 2 error?

<Bob> Yes, it is. And we need to be aware of the limitations of the analysis tool we are using. So, now you know that how might you get around the problem?

<Leslie> One way would be to aggregate the data over a longer time period before plotting on the chart … we know that will reduce the sample variation.

<Bob> Yes. That would work … but what is the downside?

<Leslie> That we have to wait a lot longer to show a change, or not. We do not want that.

<Bob> I agree. So what we do is we use a chart that is much more sensitive to small shifts of the mean.  And that is called a cusum chart. These were not invented until 30 years after Shewhart first described his time-series chart.  To give you an example, do you recall that the work-in-progress chart is much more sensitive to changes in flow than either demand or activity charts?

<Leslie> Yes, and the WIP chart also reacts immediately if either demand or activity change. It is the one I always look at first.

<Bob> That is because a WIP chart is actually a cusum chart. It is the cumulative sum of the difference between demand and activity.

<Leslie> OK! That makes sense. So how do I create and use a cusum chart?

<Bob> I have just emailed you some instructions and a few examples. You can try with your unplanned admissions data. It should only take a few minutes. I will get a cup of tea and a chocolate Hobnob while I wait.

[Five minutes later]

<Leslie> Wow! That is just brilliant!  I can see clearly on the cusum chart when the shifts happened and when I split the XmR chart at those points the underlying changes become clear and measurable. The team did indeed achieve a 10% reduction in admissions just as they claimed they had.  And I checked with a statistical test which confirmed that it is statistically significant.

<Bob> Good work.  Cusum charts take a bit of getting used to and we have be careful about the metric we are plotting and a few other things but it is a useful trick to have up our sleeves for situations like this.

<Leslie> Thanks Bob. I will bear that in mind.  Now I just need to work out how to explain cusum charts to others! I do not want to be accused of using statistical smoke-and-mirrors! I think a golf metaphor may work with the GPs.

Politicial Purpose

count_this_vote_400_wht_9473The question that is foremost in the mind of a designer is “What is the purpose?”   It is a future-focussed question.  It is a question of intent and outcome. It raises the issues of worth and value.

Without a purpose it impossible to answer the question “Is what we have fit-for-purpose?

And without a clear purpose it is impossible for a fit-for-purpose design to be created and tested.

In the absence of a future-purpose all that remains are the present-problems.

Without a future-purpose we cannot be proactive; we can only be reactive.

And when we react to problems we generate divergence.  We observe heated discussions. We hear differences of opinion as to the causes and the solutions.  We smell the sadness, anger and fear. We taste the bitterness of cynicism. And we are touched to our core … but we are paralysed.  We cannot act because we cannot decide which is the safest direction to run to get away from the pain of the problems we have.


And when the inevitable catastrophe happens we look for somewhere and someone to place and attribute blame … and high on our target-list are politicians.


So the prickly question of politics comes up and we need to grasp that nettle and examine it with the forensic lens of the system designer and we ask “What is the purpose of a politician?”  What is the output of the political process? What is their intent? What is their worth? How productive are they? Do we get value for money?

They will often answer “Our purpose is to serve the public“.  But serve is a verb so it is a process and not a purpose … “To serve the public for what purpose?” we ask. “What outcome can we expect to get?” we ask. “And when can we expect to get it?

We want a service (a noun) and as voters and tax-payers we have customer rights to one!

On deeper reflection we see a political spectrum come into focus … with Public at one end and Private at the other.  A country generates wealth through commerce … transforming natural and human resources into goods and services. That is the Private part and it has a clear and countable measure of success: profit.  The Public part is the redistribution of some of that wealth for the benefit of all – the tax-paying public. Us.

Unfortunately the Public part does not have quite the same objective test of success: so we substitute a different countable metric: votes. So the objectively measurable outcome of a successful political process is the most votes.

But we are still talking about process … not purpose.  All we have learned so far is that the politicians who attract the most votes will earn for themselves a temporary mandate to strive to achieve their political purpose. Whatever that is.

So what do the public, the voters, the tax-payers (and remember whenever we buy something we pay tax) … the customers of this political process … actually get for their votes and cash?  Are they delighted, satisfied or disappointed? Are they getting value-for-money? Is the political process fit-for-purpose? And what is the purpose? Are we all clear about that?

And if we look at the current “crisis” in health and social care in England then I doubt that “delight” will feature high on the score-sheet for those who work in healthcare or for those that they serve. The patients. The long-suffering tax-paying public.


Are politicians effective? Are they delivering on their pledge to serve the public? What does the evidence show?  What does their portfolio of public service improvement projects reveal?  Welfare, healthcare, education, police, and so on.The_Whitehall_Effect

Well the actual evidence is rather disappointing … a long trail of very expensive taxpayer-funded public service improvement failures.

And for an up-to-date list of some of the “eye-wateringly”expensive public sector improvement train-wrecks just read The Whitehall Effect.

But lurid stories of public service improvement failures do not attract precious votes … so they are not aired and shared … and when they are exposed our tax-funded politicians show their true skills and real potential.

Rather than answering the questions they filter, distort and amplify the questions and fire them at each other.  And then fall over each other avoiding the finger-of-blame and at the same time create the next deceptively-plausible election manifesto.  Their food source is votes so they have to tickle the voters to cough them up. And they are consummate masters of that art.

Politicians sell dreams and serve disappointment.


So when the-most-plausible with the most votes earn the right to wield the ignition keys for the engine of our national economy they deflect future blame by seeking the guidance of experts. And the only place they can realistically look is into the private sector who, in manufacturing anyway, have done a much better job of understanding what their customers need and designing their processes to deliver it. On-time, first-time and every-time.

Politicians have learned to be wary of the advice of academics – they need something more pragmatic and proven.  And just look at the remarkable rise of the manufacturing phoenix of Jaguar-Land-Rover (JLR) from the politically embarrassing ashes of the British car industry. And just look at Amazon to see what information technology can deliver!

So the way forward is blindingly obvious … combine manufacturing methods with information technology and build a dumb-robot manned production-line for delivering low-cost public services via a cloud-based website and an outsourced mega-call-centre manned by standard-script-following low-paid operatives.


But here we hit a bit of a snag.

Designing a process to deliver a manufactured product for a profit is not the same as designing a system to deliver a service to the public.  Not by a long chalk.  Public services are an example of what is now known as a complex adaptive system (CAS).

And if we attempt to apply the mechanistic profit-focussed management mantras of “economy of scale” and “division of labour” and “standardisation of work” to the messy real-world of public service then we actually achieve precisely the opposite of what we intended. And the growing evidence is embarrassingly clear.

We all want safer, smoother, better, and more affordable public services … but that is not what we are experiencing.

Our voted-in politicians have unwittingly commissioned complicated non-adaptive systems that ensure we collectively fail.

And we collectively voted the politicians into power and we are collectively failing to hold them to account.

So the ball is squarely in our court.


Below is a short video that illustrates what happens when politicians and civil servants attempt complex system design. It is called the “Save the NHS Game” and it was created by a surgeon who also happens to be a system designer.  The design purpose of the game is to raise awareness. The fundamental design flaw in this example is “financial fragmentation” which is the the use of specific budgets for each part of the system together with a generic, enforced, incremental cost-reduction policy (the shrinking budget).  See for yourself what happens …


In health care we are in the improvement business and to do that we start with a diagnosis … not a dream or a decision.

We study before we plan, and we plan before we do.

And we have one eye on the problem and one eye on the intended outcome … a healthier patient.  And we often frame improvement in the negative as a ‘we do not want a not sicker patient’ … physically or psychologically. Primum non nocere.  First do no harm.

And 99.9% of the time we do our best given the constraints of the system context that the voted-in politicians have created for us; and that their loyal civil servants have imposed on us.


Politicians are not designers … that is not their role.  Their part is to create and sell realistic dreams in return for votes.

Civil servants are not designers … that is not their role.  Their part is to enact the policy that the vote-seeking politicians cook up.

Doctors are not designers … that is not their role.  Their part is to make the best possible clinical decisions that will direct actions that lead, as quickly as possible, to healthier and happier patients.

So who is doing the complex adaptive system design?  Whose role is that?

And here we expose a gap.  No one.  For the simple reason that no one is trained to … so no one is tasked to.

But there is a group of people who are perfectly placed to create the context for developing this system design capability … the commissioners, the executive boards and the senior managers of our public services.

So that is where we might reasonably start … by inviting our leaders to learn about the science of complex adaptive system improvement-by-design.

And there are now quite a few people who can now teach this science … they are the ones who have done it and can demonstrate and describe their portfolios of successful and sustained public service improvement projects.

Would you vote for that?

Righteous Indignation

NHS_Legal_CostsThis heading in the the newspaper today caught my eye.

Reading the rest of the story triggered a strong emotional response: anger.

My inner chimp was not happy. Not happy at all.

So I took my chimp for a walk and we had a long chat and this is the story that emerged.

The first trigger was the eye-watering fact that the NHS is facing something like a £26 billion litigation cost.  That is about a quarter of the total NHS annual budget!

The second was the fact that the litigation bill has increased by over £3 billion in the last year alone.

The third was that the extra money will just fall into a bottomless pit – the pockets of legal experts – not to where it is intended, to support overworked and demoralised front-line NHS staff. GPs, nurses, AHPs, consultants … the ones that deliver care.

That is why my chimp was so upset.  And it sounded like righteous indignation rather than irrational fear.


So what is the root cause of this massive bill? A more litigious society? Ambulance chasing lawyers trying to make a living? Dishonest people trying to make a quick buck out of a tax-funded system that cannot defend itself?

And what is the plan to reduce this cost?

Well in the article there are three parts to this:
“apologise and learn when you’re wrong,  explain and vigorously defend when we’re right, view court as a last resort.”

This sounds very plausible but to achieve it requires knowing when we are wrong or right.

How do we know?


Generally we all think we are right until we are proved wrong.

It is the way our brains are wired. We are more sure about our ‘rightness’ than the evidence suggests is justified. We are naturally optimistic about our view of ourselves.

So to be proved wrong is emotionally painful and to do it we need:
1) To make a mistake.
2) For that mistake to lead to psychological or physical harm.
3) For the harm to be identified.
4) For the cause of the harm to be traced back to the mistake we made.
5) For the evidence to be used to hold us to account, (to apologise and learn).

And that is all hunky-dory when we are individually inept and we make avoidable mistakes.

But what happens when the harm is the outcome of a combination of actions that individually are harmless but which together are not?  What if the contributory actions are sensible and are enforced as policies that we dutifully follow to the letter?

Who is held to account?  Who needs to apologise? Who needs to learn?  Someone? Anyone? Everyone? No one?

The person who wrote the policy?  The person who commissioned the policy to be written? The person who administers the policy? The person who follows the policy?

How can that happen if the policies are individually harmless but collectively lethal?


The error here is one of a different sort.

It is called an ‘error of omission’.  The harm is caused by what we did not do.  And notice the ‘we’.

What we did not do is to check the impact on others of the policies that we write for ourselves.

Example:

The governance department of a large hospital designs safety policies that if not followed lead to disciplinary action and possible dismissal.  That sounds like a reasonable way to weed out the ‘bad apples’ and the policies are adhered to.

At the same time the operations department designs flow policies (such as maximum waiting time targets and minimum resource utilisation) that if not followed lead to disciplinary action and possible dismissal.  That also sounds like a reasonable way to weed out the layabouts whose idleness cause queues and delays and the policies are adhered to.

And at the same time the finance department designs fiscal policies (such as fixed budgets and cost improvement targets) that if not followed lead to disciplinary action and possible dismissal. Again, that sounds like a reasonable way to weed out money wasters and the policies are adhered to.

What is the combined effect? The multiple safety checks take more time to complete, which puts extra workload on resources and forces up utilisation. As the budget ceiling is lowered the financial and operational pressures build, the system heats up, stress increases, corners are cut, errors slip through the safety checks. More safety checks are added and the already over-worked staff are forced into an impossible position.  Chaos ensues … more mistakes are made … patients are harmed and justifiably seek compensation by litigation.  Everyone loses (except perhaps the lawyers).


So why was my inner chimp really so unhappy?

Because none of this is necessary. This scenario is avoidable.

Reducing the pain of complaints and the cost of litigation requires setting realistic expectations to avoid disappointment and it requires not creating harm in the first place.

That implies creating healthcare systems that are inherently safe, not made not-unsafe by inspection-and-correction.

And it implies measuring and sharing intended and actual outcomes not  just compliance with policies and rates of failure to meet arbitrary and conflicting targets.

So if that is all possible and all that is required then why are we not doing it?

Simple. We never learned how. We never knew it is possible.

Seeing and Believing

Flow_Science_Works[Beep] It was time again for the weekly Webex coaching session. Bob dialled into the teleconference to find Leslie already there … and very excited.

<Leslie> Hi Bob, I am so excited. I cannot wait to tell you about what has happened this week.

<Bob> Hi Leslie. You really do sound excited. I cannot wait to hear.

<Leslie> Well, let us go back a bit in the story.  You remember that I was really struggling to convince the teams I am working with to actually make changes.  I kept getting the ‘Yes … but‘ reaction from the sceptics.  It was as if they were more comfortable with complaining.

<Bob> That is the normal situation. We are all very able to delude ourselves that what we have is all we can expect.

<Leslie> Well, I listened to what you said and I asked them to work through what they predicted could happen if they did nothing.  Their healthy scepticism then worked to build their conviction that doing nothing was a very dangerous choice.

<Bob> OK. And I am guessing that insight was not enough.

<Leslie> Correct.  So then I shared some examples of what others had achieved and how they had done it, and I started to see some curiosity building, but no engagement still.  So I kept going, sharing stories of ‘what’, and ‘how’.  And eventually I got an email saying “We have thought about what you said about a one day experiment and we are prepared to give that a try“.

<Bob> Excellent. How long ago was that?

<Leslie> Three months. And I confess that I was part of the delay.  I was so surprised that they said ‘OK‘ that I was not ready to follow on.

<Bob> OK. It sounds like you did not really believe it was possible either. So what did you do next?

<Leslie> Well I knew for sure that we would only get one chance.  If the experiment failed then it would be Game Over. So I needed to know before the change what the effect would be.  I needed to be able to predict it accurately. I also needed to feel reassured enough to take the leap of faith.

<Bob> Very good, so did you use some of your ISP-2 skills?

<Leslie> Yes! And it was a bit of a struggle because doing it in theory is one thing; doing it in reality is a lot messier.

<Bob> So what did you focus on?

<Leslie> The top niggle of course!  At St Elsewhere® we have a call-centre that provides out-of-office-hours telephone advice and guidance – and it is especially busy at weekends.  We are required to answer all calls quickly, which we do, and then we categorise them into ‘urgent’  and ‘non-urgent’ and pass them on to the specialists.  They call the clients back and provide expert advice and guidance for their specific problem.

<Bob>So you do not use standard scripts?

<Leslie> No, that does not work. The variety of the problems we have to solve is too wide. And the specialist has to come to a decision quite quickly … solve the problem over the phone, arrange a visit to an out of hours clinic, or to dispatch a mobile specialist to the client immediately.

<Bob> OK. So what was the top niggle?

<Leslie> We have contractual performance specifications we have to meet for the maximum waiting time for our specialists to call clients back; and we were not meeting them.  That implied that we were at risk of losing the contract and that meant loss of revenue and jobs.

<Bob> So doing nothing was not an option.

<Leslie> Correct. And asking for more resources was not either … the contract was a fixed price one. We got it because we offered the lowest price. If we employed more staff we would go out of business.  It was a rock-and-a-hard-place problem.

<Bob> OK.  So if this was ranked as your top niggle then you must have had a solution in mind.

<Leslie> I had a diagnosis.  The Vitals Chart© showed that we already had enough resources to do the work. The performance failure was caused by a scheduling policy – one that we created – our intuitively-obvious policy.

<Bob> Ah ha! So you suggested doing something that felt counter-intuitive.

<Leslie> Yes. And that generated all the ‘Yes .. but‘  discussion.

<Bob> OK. Do you have the Vitals Chart© to hand? Can you send me the Wait-Time run chart?

<Leslie> Yes, I expected you would ask for that … here it is.

StE_CallCentre_Before<Bob> OK. So I am looking at the run chart of waiting time for the call backs for one Saturday, and it is in call arrival order, and the blue line is the maximum allowed waiting time is that correct?

<Leslie>Yup. Can you see the diagnosis?

<Bob> Yes. This chart shows the classic pattern of ‘prioritycarveoutosis’.  The upper border is the ‘non-urgents’ and the lower group are the ‘urgents’ … the queue jumpers.

<Leslie> Spot on.  It is the rising tide of non-urgent calls that spill over the specification limit.  And when I shared this chart the immediate reaction was ‘Well that proves we need more capacity!

<Bob> And the WIP chart did not support that assertion.

<Leslie> Correct. It showed we had enough total flow-capacity already.

<Bob> So you suggested a change in the scheduling policy would solve the problem without costing any money.

<Leslie> Yes. And the reaction to that was ‘That is impossible. We are already working flat out. We need more capacity because to work quicker will mean cutting corners and it is unsafe to cut-corners‘.

<Bob> So how did you get around that invalid but widely held belief?

<Leslie> I used one of the FISH techniques. I got a few of them to play a table top game where we simulated a much simpler process and demonstrated the same waiting time pattern on a hand-drawn run chart.

<Bob> Excellent.  Did that get you to the ‘OK, we will give it a go for one day‘ decision.

<Leslie>Yes. But then I had to come up with a new design and I had test it so I know it would work.

<Bob> Because that was a step too far for them. And It sounds like you achieved that.

<Leslie> Yes.  It was tough though because I knew I had to prove to myself I could do it. If I had asked you I know what you would have said – ‘I know you can do this‘.  And last Saturday we ran the ‘experiment’. I was pacing up and down like an expectant parent!

<Bob> I expect rather like the ESA team who have just landed Rosetta’s little probe-child on an asteroid travelling at 38,000 miles per hour, billions of miles from Earth after a 10 year journey through deep space!  Totally inspiring stuff!

<Leslie> Yes. And that is why I am so excited because OUR DESIGN WORKED!  Exactly as predicted.

<Bob> Three cheers for you!  You have experienced that wonderful feeling when you see the effect of improvement-by-design with your own eyes. When that happens then you really believe what opportunities become possible.

<Leslie> So I want to show you the ‘after’ chart …

StE_CallCentre_After

<Bob> Wow!  That is a spectacular result! The activity looks very similar, and other than a ‘blip’ between 15:00 and 19:00 the prioritycarveoutosis has gone. The spikes have assignable causes I assume?

<Leslie> Spot on again!  The activity was actually well above average for a Saturday.  The subjective feedback was that the new design felt calm and under-control. The chaos had evaporated.  The performance was easily achieved and everyone was very positive about the whole experience.  The sceptics were generous enough to say it had gone better than they expected.  And yes, I am now working through the ‘spikes’ and excluding them … but only once I have a root cause that explains them.

<Bob> Well done Leslie! I sense that you now believe what is possible whereas before you just hoped it would be.

<Leslie> Yes! And the most important thing to me is that we did it ourselves. Which means improvement-by-design can be learned. It is not obvious, it feels counter-intuitive, so it is not easy … but it works.

<Bob> Yes. That is the most important message. And you have now earned your ISP Certificate of Competency.

Spring the Trap

trapped_in_question_PA_300_wht_3174[Beeeeeep] It was time for the weekly coaching chat.  Bob, a seasoned practitioner of flow science, dialled into the teleconference with Lesley.

<Bob> Good afternoon Lesley, can I suggest a topic today?

<Lesley> Hi Bob. That would be great, and I am sure you have a good reason for suggesting it.

<Bob> I would like to explore the concept of time-traps again because it something that many find confusing. Which is a shame because it is often the key to delivering surprisingly dramatic and rapid improvements; at no cost.

<Lesley> Well doing exactly that is what everyone seems to be clamouring for so it sounds like a good topic to me.  I confess that I am still not confident to teach others about time-traps.

<Bob> OK. Let us start there. Can you describe what happens when you try to teach it?

<Lesley> Well, it seems to be when I say that the essence of a time-trap is that the lead time and the flow are independent.  For example, the lead time stays the same even though the flow is changing.  That really seems to confuse people; and me too if I am brutally honest.

<Bob> OK.  Can you share the example that you use?

<Lesley> Well it depends on who I am talking to.  I prefer to use an example that they are familiar with.  If it is a doctor I might use the example of the ward round.  If it is a manager I might use the example of emails or meetings.

<Bob> Assume I am a doctor then – an urgent care physician.

<Lesley> OK.  Let us take it that I have done the 4N Chart and the  top niggle is ‘Frustration because the post-take ward round takes so long that it delays the discharge of patients who then often have to stay an extra night which then fills up the unit with waiting patients and we get blamed for blocking flow from A&E and causing A&E breaches‘.

<Bob> That sounds like a good example. What is the time-trap in that design?

<Lesley> The  post-take ward round.

<Bob> And what justification is usually offered for using that design?

<Lesley> That it is a more efficient use of the expensive doctor’s time if the whole team congregate once a day and work through all the patients admitted over the previous 24 hours.  They review the presentation, results of tests, diagnosis, management plans, response to treatment, decide the next steps and do the paperwork.

<Bob> And why is that a time-trap design?

<Lesley> Because  it does not matter if one patient is admitted or ten, the average lead time from the perspective of the patient is the same – about one day.

<Bob> Correct. So why is the doctor complaining that there are always lots of patients to see?

<Lesley> Because there are. The emergency short stay ward is usually full by the time the post take ward round happens.

<Bob> And how do you present the data that shows the lead time is independent of the flow?

<Lesley> I use a Gantt chart, but the problem I find is that there is so much variation and queue jumping it is not blindingly obvious from the Gantt chart that there is a time-trap. There is so much else clouding the picture.

<Bob>Is that where the ‘but I do not understand‘ conversation starts?

<Lesley> Yes. And that is where I get stuck too.

<Bob> OK.  The issue here is that a Gantt chart is not the ideal visualisation tool when there are lots of crossed-streams, frequently changing priorities, and many other sources of variation.  The Gantt chart gets ‘messy’.   The trick here is to use a Vitals Chart – and you can derive that from the same data you used for the Gantt chart.

<Lesley> You are right about the Gantt chart getting messy. I have seen massive wall-sized Gantt charts that are veritable works-of-art and that have taken hours to create; and everyone standing looking at it and saying ‘Wow! That is an impressive piece of work.  So what does it tell us? How does it help?

<Bob> Yes, I have experienced that too. I think what happens is that those who do the foundation training and discover the Gantt chart then try to use it to solve every flow problem – and in their enthusiasm they discount any warning advice.  Desperation drives over-inflated expectation which is often the pre-cursor to disappointment, and then disillusionment.  The Nerve Curve again.

<Lesley> But a Vitals Chart is an HCSE level technique and you said that we do not need to put everyone through HCSE training.

<Bob>That is correct. I am advocating an HCSE-in-training using a Vitals Chart to explain the concept of a time-trap so that everyone understands it well enough to see the flaw in the design.

<Lesley> Ah ha!  Yes, I see.  So what is my next step?

<Bob> I will let you answer that.

<Lesley> Um, let me think.

The outcome I want is everyone understands the concept of a time-trap well enough to feel comfortable with trying a time-trap-free design because they can see the benefits for them.

And to get that depth of understanding I need to design a table top exercise that starts with a time-trap design and generates raw data that we can use to build both a Gantt chart and the Vitals Chart; so I can point out and explain the characteristic finger-print of a time trap.

And then we can ‘test’ an alternative time-trap-free design and generate the prognostic Gantt and Vitals Chart and compare with the baseline diagnostic charts to reveal the improvement.

<Bob> That sounds like a good plan to me.  And if you do that, and your team apply it to a real improvement exercise, and you see the improvement and you share the story, then that will earn you a coveted HCSE Certificate of Competency.

<Lesley>Ah ha! Now I understand the reason you suggested this topic!  I am on the case!

Fit-4-Purpose

F4P_PillsWe all want a healthcare system that is fit for purpose.

One which can deliver diagnosis, treatment and prognosis where it is needed, when it is needed, with empathy and at an affordable cost.

One that achieves intended outcomes without unintended harm – either physical or psychological.

We want safety, delivery, quality and affordability … all at the same time.

And we know that there are always constraints we need to work within.

There are constraints set by the Laws of the Universe – physical constraints.

These are absolute,  eternal and are not negotiable.

Dr Who’s fantastical tardis is fictional. We cannot distort space, or travel in time, or go faster than light – well not with our current knowledge.

There are also constraints set by the Laws of the Land – legal constraints.

Legal constraints are rigid but they are also adjustable.  Laws evolve over time, and they are arbitrary. We design them. We choose them. And we change them when they are no longer fit for purpose.

The third limit is often seen as the financial constraint. We are required to live within our means. There is no eternal font of  limitless funds to draw from.  We all share a planet that has finite natural resources  – and ‘grow’ in one part implies ‘shrink’ in another.  The Laws of the Universe are not negotiable. Mass, momentum and energy are conserved.

The fourth constraint is perceived to be the most difficult yet, paradoxically, is the one that we have most influence over.

It is the cultural constraint.

The collective, continuously evolving, unwritten rules of socially acceptable behaviour.


Improvement requires challenging our unconscious assumptions, our beliefs and our habits – and selectively updating those that are no longer fit-4-purpose.

To learn we first need to expose the gaps in our knowledge and then to fill them.

We need to test our hot rhetoric against cold reality – and when the fog of disillusionment forms we must rip up and rewrite what we have exposed to be old rubbish.

We need to examine our habits with forensic detachment and we need to ‘unlearn’ the ones that are limiting our effectiveness, and replace them with new habits that better leverage our capabilities.

And all of that is tough to do. Life is tough. Living is tough. Learning is tough. Leading is tough. But it energising too.

Having a model-of-effective-leadership to aspire to and a peer-group for mutual respect and support is a critical piece of the jigsaw.

It is not possible to improve a system alone. No matter how smart we are, how committed we are, or how hard we work.  A system can only be improved by the system itself. It is a collective and a collaborative challenge.


So with all that in mind let us sketch a blueprint for a leader of systemic cultural improvement.

What values, beliefs, attitudes, knowledge, skills and behaviours would be on our ‘must have’ list?

What hard evidence of effectiveness would we ask for? What facts, figures and feedback?

And with our check-list in hand would we feel confident to spot an ‘effective leader of systemic cultural improvement’ if we came across one?


This is a tough design assignment because it requires the benefit of  hindsight to identify the critical-to-success factors: our ‘must have and must do’ and ‘must not have and must not do’ lists.

H’mmmm ….

So let us take a more pragmatic and empirical approach. Let us ask …

“Are there any real examples of significant and sustained healthcare system improvement that are relevant to our specific context?”

And if we can find even just one Black Swan then we can ask …

Q1. What specifically was the significant and sustained improvement?
Q2. How specifically was the improvement achieved?
Q3. When exactly did the process start?
Q4. Who specifically led the system improvement?

And if we do this exercise for the NHS we discover some interesting things.

First let us look for exemplars … and let us start using some official material – the Monitor website (http://www.monitor.gov.uk) for example … and let us pick out ‘Foundation Trusts’ because they are the ones who are entrusted to run their systems with a greater degree of capability and autonomy.

And what we discover is a league table where those FTs that are OK are called ‘green’ and those that are Not OK are coloured ‘red’.  And there are some that are ‘under review’ so we will call them ‘amber’.

The criteria for deciding this RAG rating are embedded in a large balanced scorecard of objective performance metrics linked to a robust legal contract that provides the framework for enforcement.  Safety metrics like standardised mortality ratios, flow metrics like 18-week and 4-hour target yields, quality metrics like the friends-and-family test, and productivity metrics like financial viability.

A quick tally revealed 106 FTs in the green, 10 in the amber and 27 in the red.

But this is not much help with our quest for exemplars because it is not designed to point us to who has improved the most, it only points to who is failing the most!  The league table is a name-and-shame motivation-destroying cultural-missile fuelled by DRATs (delusional ratios and arbitrary targets) and armed with legal teeth.  A projection of the current top-down, Theory-X, burn-the-toast-then-scrape-it management-of-mediocrity paradigm. Oh dear!

However,  despite these drawbacks we could make better use of this data.  We could look at the ‘reds’ and specifically at their styles of cultural leadership and compare with a random sample of all the ‘greens’ and their models for success. We could draw out the differences and correlate with outcomes: red, amber or green.

That could offer us some insight and could give us the head start with our blueprint and check-list.


It would be a time-consuming and expensive piece of work and we do not want to wait that long. So what other avenues are there we can explore now and at no cost?

Well there are unofficial sources of information … the ‘grapevine’ … the stuff that people actually talk about.

What examples of effective improvement leadership in the NHS are people talking about?

Well a little blue bird tweeted one in my ear this week …

And specifically they are talking about a leader who has learned to walk-the-improvement-walk and is now talking-the-improvement-walk: and that is Sir David Dalton, the CEO of Salford Royal.

Here is a copy of the slides from Sir David’s recent lecture at the Kings Fund … and it is interesting to compare and contrast it with the style of NHS Leadership that led up to the Mid Staffordshire Failure, and to the Francis Report, and to the Keogh Report and to the Berwick Report.

Chalk and cheese!


So if you are an NHS employee would you rather work as part of an NHS Trust where the leaders walk-DD’s-walk and talk-DD’s-talk?

And if you are an NHS customer would you prefer that the leaders of your local NHS Trust walked Sir David’s walk too?


We are the system … we get the leaders that we deserve … we make the  choice … so we need to choose wisely … and we need to make our collective voice heard.

Actions speak louder than words.  Walk works better than talk.  We must be the change we want to see.

A Little Law and Order

teamwork_puzzle_build_PA_150_wht_2341[Bing bong]. The sound heralded Lesley logging on to the weekly Webex coaching session with Bob, an experienced Improvement Science Practitioner.

<Bob> Good afternoon Lesley.  How has your week been and what topic shall we explore today?

<Lesley> Hi Bob. Well in a nutshell, the bit of the system that I have control over feels like a fragile oasis of calm in a perpetual desert of chaos.  It is hard work keeping the oasis clear of the toxic sand that blows in!

<Bob> A compelling metaphor. I can just picture it.  Maintaining order amidst chaos requires energy. So what would you like to talk about?

<Lesley> Well, I have a small shoal of FISHees who I am guiding  through the foundation shallows and they are getting stuck on Little’s Law.  I confess I am not very good at explaining it and that suggests to me that I do not really understand it well enough either.

<Bob> OK. So shall we link those two theme – chaos and Little’s Law?

<Lesley> That sounds like an excellent plan!

<Bob> OK. So let us refresh the foundation knowledge. What is Little’s Law?

<Lesley>It is a fundamental Law of process physics that relates flow, with lead time and work in progress.

<Bob> Good. And specifically?

<Lesley> Average lead time is equal to the average flow multiplied by the average work in progress.

<Bob>Yes. And what are the units of flow in your equation?

<Lesley> Ah yes! That is  a trap for the unwary. We need to be clear how we express flow. The usual way is to state it as number of tasks in a defined period of time, such as patients admitted per day.  In Little’s Law the convention is to use the inverse of that which is the average interval between consecutive flow events. This is an unfamiliar way to present flow to most people.

<Bob> Good. And what is the reason that we use the ‘interval between events’ form?

<Leslie> Because it is easier to compare it with two critically important  flow metrics … the takt time and the cycle time.

<Bob> And what is the takt time?

<Leslie> It is the average interval between new tasks arriving … the average demand interval.

<Bob> And the cycle time?

<Leslie> It is the shortest average interval between tasks departing …. and is determined by the design of the flow constraint step.

<Bob> Excellent. And what is the essence of a stable flow design?

<Lesley> That the cycle time is less than the takt time.

<Bob>Why less than? Why not equal to?

<Leslie> Because all realistic systems need some flow resilience to exhibit stable and predictable-within-limits behaviour.

<Bob> Excellent. Now describe the design requirements for creating chronically chaotic system behaviour?

<Leslie> This is a bit trickier to explain. The essence is that for chronically chaotic behaviour to happen then there must be two feedback loops – a destabilising loop and a stabilising loop.  The destabilising loop creates the chaos, the stabilising loop ensures it is chronic.

<Bob> Good … so can you give me an example of a destabilising feedback loop?

<Leslie> A common one that I see is when there is a long delay between detecting a safety risk and the diagnosis, decision and corrective action.  The risks are often transitory so if the corrective action arrives long after the root cause has gone away then it can actually destabilise the process and paradoxically increase the risk of harm.

<Bob> Can you give me an example?

<Leslie>Yes. Suppose a safety risk is exposed by a near miss.  A delay in communicating the niggle and a root cause analysis means that the specific combination of factors that led to the near miss has gone. The holes in the Swiss cheese are not static … they move about in the chaos.  So the action that follows the accumulation of many undiagnosed near misses is usually the non-specific mantra of adding yet another safety-check to the already burgeoning check-list. The longer check-list takes more time to do, and is often repeated many times, so the whole flow slows down, queues grow bigger, waiting times get longer and as pressure comes from the delivery targets corners start being cut, and new near misses start to occur; on top of the other ones. So more checks are added and so on.

<Bob> An excellent example! And what is the outcome?

<Leslie> Chronic chaos which is more dangerous, more disordered and more expensive. Lose lose lose.

<Bob> And how do the people feel who work in the system?

<Leslie> Chronically naffed off! Angry. Demotivated. Cynical.

<Bob>And those feelings are the key symptoms.  Niggles are not only symptoms of poor process design, they are also symptoms of a much deeper problem: a violation of values.

<Leslie> I get the first bit about poor design; but what is that second bit about values?

<Bob>  We all have a set of values that we learned when we were very young and that have bee shaped by life experience.  They are our source of emotional energy, and our guiding lights in an uncertain world. Our internal unconscious check-list.  So when one of our values is violated we know because we feel angry. How that anger is directed varies from person to person … some internalise it and some externalise it.

<Leslie> OK. That explains the commonest emotion that people report when they feel a niggle … frustration which is the same as anger.

<Bob>Yes.  And we reveal our values by uncovering the specific root causes of our niggles.  For example if I value ‘Hard Work’ then I will be niggled by laziness. If you value ‘Experimentation’ then you may be niggled by ‘Rigid Rules’.  If someone else values ‘Safety’ then they may value ‘Rigid Rules’ and be niggled by ‘Innovation’ which they interpret as risky.

<Leslie> Ahhhh! Yes, I see.  This explains why there is so much impassioned discussion when we do a 4N Chart! But if this behaviour is so innate then it must be impossible to resolve!

<Bob> Understanding  how our values motivate us actually helps a lot because we are naturally attracted to others who share the same values – because we have learned that it reduces conflict and stress and improves our chance of survival. We are tribal and tribes share the same values.

<Leslie> Is that why different  departments appear to have different cultures and behaviours and why they fight each other?

<Bob> It is one factor in the Silo Wars that are a characteristic of some large organisations.  But Silo Wars are not inevitable.

<Leslie> So how are they avoided?

<Bob> By everyone knowing what common purpose of the organisation is and by being clear about what values are aligned with that purpose.

<Leslie> So in the healthcare context one purpose is avoidance of harm … primum non nocere … so ‘safety’ is a core value.  Which implies anything that is felt to be unsafe generates niggles and well-intended but potentially self-destructive negative behaviour.

<Bob> Indeed so, as you described very well.

<Leslie> So how does all this link to Little’s Law?

<Bob>Let us go back to the foundation knowledge. What are the four interdependent dimensions of system improvement?

<Leslie> Safety, Flow, Quality and Productivity.

<Bob> And one measure of  productivity is profit.  So organisations that have only short term profit as their primary goal are at risk of making poor long term safety, flow and quality decisions.

<Leslie> And flow is the key dimension – because profit is just  the difference between two cash flows: income and expenses.

<Bob> Exactly. One way or another it all comes down to flow … and Little’s Law is a fundamental Law of flow physics. So if you want all the other outcomes … without the emotionally painful disorder and chaos … then you cannot avoid learning to use Little’s Law.

<Leslie> Wow!  That is a profound insight.  I will need to lie down in a darkened room and meditate on that!

<Bob> An oasis of calm is the perfect place to pause, rest and reflect.

A Sisyphean Nightmare

cardiogram_heart_signal_150_wht_5748[Beep] It was time for the weekly e-mentoring session so Bob switched on his laptop, logged in to the virtual meeting site and found that Lesley was already there.

<Bob> Hi Lesley. What shall we talk about today?

<Lesley> Hello Bob. Another old chestnut I am afraid. Queues.  I keep hitting the same barrier where people who are fed up with the perpetual queue chaos have only one mantra “If you want to avoid long waiting times then we need more capacity.

<Bob> So what is the problem? You know that is not the cause of chronic queues.

<Lesley> Yes, I know that mantra is incorrect – but I do not yet understand how to respectfully challenge it and how to demonstrate why it is incorrect and what the alternative is.

<Bob> OK. I understand. So could you outline a real example that we can work with.

<Lesley> Yes. Another old chestnut: the Emergency Department 4-hour breaches.

<Bob> Do you remember the Myth of Sisyphus?

<Leslie> No, I do not remember that being mentioned in the FISH course.

<Bob> Ho ho! No indeed,  it is much older. In Greek mythology Sisyphus was a king of Ephyra who was punished by the Gods for chronic deceitfulness by being compelled to roll an immense boulder up a hill, only to watch it roll back down, and then to repeat this action forever.

Sisyphus_Cartoon

<Lesley> Ah! I see the link. Yes, that is exactly how people in the ED feel.  Everyday it feels like they are pushing a heavy boulder uphill – only to have to repeat the same labour the next day. And they do not believe it can ever be any better with the resources they have.

<Bob> A rather depressing conclusion! Perhaps a better metaphor is the story in the film  “Ground Hog Day” where Bill Murray plays the part of a rather arrogant newsreader who enters a recurring nightmare where the same day is repeated, over and over. He seems powerless to prevent it.  He does eventually escape when he learns the power of humility and learns how to behave differently.

<Lesley> So the message is that there is a way out of this daily torture – if we are humble enough to learn the ‘how’.

<Bob> Well put. So shall we start?

<Lesley> Yes please!

<Bob> OK. As you know very well it is important not to use the unqualified term ‘capacity’.  We must always state if we are referring to flow-capacity or space-capacity.

<Lesley> Because they have different units and because they are intimately related to lead time by Little’s Law.

<Bob> Yes.  Little’s Law is mathematically proven Law of flow physics – it is not negotiable.

<Lesley> OK. I know that but how does it solve problem we started with?

<Bob> Little’s Law is necessary but it is not sufficient. Little’s Law relates to averages – and is therefore just the foundation. We now need to build the next level of understanding.

<Lesley> So you mean we need to introduce variation?

<Bob> Yes. And the tool we need for this is a particular form of time-series chart called a Vitals Chart.

<Lesley> And I am assuming that will show the relationship between flow, lead time and work in progress … over time ?

<Bob> Exactly. It is the temporal patterns on the Vitals Chart that point to the root causes of the Sisyphean Chaos. The flow design flaws.

<Lesley> Which are not lack of flow-capacity or space-capacity.

<Bob> Correct. If the chaos is chronic then there must already be enough space-capacity and flow-capacity. Little’s Law shows that, because if there were not the system would have failed completely a long time ago. The usual design flaw in a chronically chaotic system is one or more misaligned policies.  It is as if the system hardware is OK but the operating software is not.

<Lesley> So to escape from the Sisyphean Recurring ED 4-Hour Breach Nightmare we just need enough humility and enough time to learn how to diagnose and redesign some of our ED system operating software? Some of our own policies? Some of our own mantras?

<Bob> Yup.  And not very much actually. Most of the software is OK. We need to focus on the flaws.

<Lesley> So where do I start?

<Bob> You need to do the ISP-1 challenge that is called Brainteaser 104.  That is where you learn how to create a Vitals Chart.

<Lesley> OK. Now I see what I need to do and the reason:  understanding how to do that will help me explain it to others. And you are not going to just give me the answer.

<Bob> Correct. I am not going to just give you the answer. You will not fully understand unless you are able to build your own Vitals Chart generator. You will not be able to explain the how to others unless you demonstrate it to yourself first.

<Lesley> And what else do I need to do that?

<Bob> A spreadsheet and your raw start and finish event data.

<Lesley> But we have tried that before and neither I nor the database experts in our Performance Department could work out how to get the real time work in progress from the events – so we assumed we would have to do a head count or a bed count every hour which is impractical.

<Bob> It is indeed possible as you are about to discover for yourself. The fact that we do not know how to do something does not prove that it is impossible … humility means accepting our inevitable ignorance and being open to learning. Those who lack humility will continue to live the Sisyphean Nightmare of ED Ground Hog Day. The choice to escape is ours.

<Lesley> I choose to learn. Please send me BT104.

<Bob> It is on its way …

The 85% Optimum Occupancy Myth

egg_face_spooked_400_wht_13421There seems to be a belief among some people that the “optimum” average bed occupancy for a hospital is around 85%.

More than that risks running out of beds and admissions being blocked, 4 hour breaches appearing and patients being put at risk. Less than that is inefficient use of expensive resources. They claim there is a ‘magic sweet spot’ that we should aim for.

Unfortunately, this 85% optimum occupancy belief is a myth.

So, first we need to dispel it, then we need to understand where it came from, and then we are ready to learn how to actually prevent queues, delays, disappointment, avoidable harm and financial non-viability.


Disproving this myth is surprisingly easy.   A simple thought experiment is enough.

Suppose we have a policy where  we keep patients in hospital until someone needs their bed, then we discharge the patient with the longest length of stay and admit the new one into the still warm bed – like a baton pass.  There would be no patients turned away – 0% breaches.  And all our the beds would always be full – 100% occupancy. Perfection!

And it does not matter if the number of admissions arriving per day is varying – as it will.

And it does not matter if the length of stay is varying from patient to patient – as it will.

We have disproved the hypothesis that a maximum 85% average occupancy is required to achieve 0% breaches.


The source of this specific myth appears to be a paper published in the British Medical Journal in 1999 called “Dynamics of bed use in accommodating emergency admissions: stochastic simulation model

So it appears that this myth was cooked up by academic health economists using a computer model.

And then amateur queue theory zealots jump on the band-wagon to defend this meaningless mantra and create a smoke-screen by bamboozling the mathematical muggles with tales of Poisson processes and Erlang equations.

And they are sort-of correct … the theoretical behaviour of the “ideal” stochastic demand process was described by Poisson and the equations that describe the theoretical behaviour were described by Agner Krarup Erlang.  Over 100 years ago before we had computers.

BUT …

The academics and amateurs conveniently omit one minor, but annoying,  fact … that real world systems have people in them … and people are irrational … and people cook up policies that ride roughshod over the mathematics, the statistics and the simplistic, stochastic mathematical and computer models.

And when creative people start meddling then just about anything can happen!


So what went wrong here?

One problem is that the academic hefalumps unwittingly stumbled into a whole minefield of pragmatic process design traps.

Here are just some of them …

1. Occupancy is a ratio – it is a meaningless number without its context – the flow parameters.

2. Using linear, stochastic models is dangerous – they ignore the non-linear complex system behaviours (chaos to you and me).

3. Occupancy relates to space-capacity and says nothing about the flow-capacity or the space-capacity and flow-capacity scheduling.

4. Space-capacity utilisation (i.e. occupancy) and systemic operational efficiency are not equivalent.

5. Queue theory is a simplification of reality that is needed to make the mathematics manageable.

6. Ignoring the fact that our real systems are both complex and adaptive implies that blind application of basic queue theory rhetoric is dangerous.

And if we recognise and avoid these traps and we re-examine the problem a little more pragmatically then we discover something very  useful:

That the maximum space capacity requirement (the number of beds needed to avoid breaches) is actually easily predictable.

It does not need a black-magic-box full of scary queue theory equations or rather complicated stochastic simulation models to do this … all we need is our tried-and-trusted tool … a spreadsheet.

And we need something else … some flow science training and some simulation model design discipline.

When we do that we discover something else …. that the expected average occupancy is not 85%  … or 65%, or 99%, or 95%.

There is no one-size-fits-all optimum occupancy number.

And as we explore further we discover that:

The expected average occupancy is context dependent.

And when we remember that our real system is adaptive, and it is staffed with well-intended, well-educated, creative people (who may have become rather addicted to reactive fire-fighting),  then we begin to see why the behaviour of real systems seems to defy the predictions of the 85% optimum occupancy myth:

Our hospitals seem to work better-than-predicted at much higher occupancy rates.

And then we realise that we might actually be able to design proactive policies that are better able to manage unpredictable variation; better than the simplistic maximum 85% average occupancy mantra.

And finally another penny drops … average occupancy is an output of the system …. not an input. It is an effect.

And so is average length of stay.

Which implies that setting these output effects as causal inputs to our bed model creates a meaningless, self-fulfilling, self-justifying delusion.

Ooops!


Now our challenge is clear … we need to learn proactive and adaptive flow policy design … and using that understanding we have the potential to deliver zero delays and high productivity at the same time.

And doing that requires a bit more than a spreadsheet … but it is possible.

Seeing-by-Doing

OneStopBeforeGanttFlow improvement-by-design requires being able to see the flows; and that is trickier than it first appears.

We can see movement very easily.

Seeing flows is not so easy – particularly when they are mixed-up and unsteady.

One of the most useful tools for visualising flow was invented over 100 years ago by Henry Laurence Gantt (1861-1919).

Henry Gantt was a mechanical engineer from Johns Hopkins University and an early associate of Frederick Taylor. Gantt parted ways with Taylor because he disagreed with the philosophy of Taylorism which was that workers should be instructed what to do by managers (=parent-child).  Gantt saw that workers and managers could work together for mutual benefit of themselves and their companies (=adult-adult).  At one point Gantt was invited to streamline the production of munitions for the war effort and his methods were so successful that the Ordinance Department was the most productive department of the armed forces.  Gantt favoured democracy over autocracy and is quoted to have said “Our most serious trouble is incompetence in high places. The manager who has not earned his position and who is immune from responsibility will fail time and again, at the cost of the business and the workman“.

Henry Gantt invented a number of different charts – not just the one used in project management which was actually invented 20 years earlier by Karol Adamieki and re-invented by Gantt. It become popularised when it was used in the Hoover Dam project management; but that was after Gantt’s death in 1919.

The form of Gantt chart above is called a process template chart and it is designed to show the flow of tasks through  a process. Each horizontal line is a task; each vertical column is an interval of time. The colour code in each cell indicates what the task is doing and which resource the task is using during that time interval. Red indicates that the task is waiting. White means that the task is outside the scope of the chart (e.g. not yet arrived or already departed).

The Gantt chart shows two “red wedges”.  A red wedge that is getting wider from top to bottom is the pattern created by a flow constraint.  A red wedge that is getting narrower from top to bottom is the pattern of a policy constraint.  Both are signs of poor scheduling design.

A Gantt chart like this has three primary uses:
1) Diagnosis – understanding how the current flow design is creating the queues and delays.
2) Design – inventing new design options.
3) Prognosis – testing the innovative designs so the ‘fittest’ can be chosen for implementation.

These three steps are encapsulated in the third “M” of 6M Design® – the Model step.

In this example the design flaw was the scheduling policy.  When that was redesigned the outcome was zero-wait performance. No red on the chart at all.  The same number of tasks were completed in the same with the same resources used. Just less waiting. Which means less space is needed to store the queue of waiting work (i.e. none in this case).

That this is even possible comes as a big surprise to most people. It feels counter-intuitive. It is however an easy to demonstrate fact. Our intuition tricks us.

And that reduction in the size of the queue implies a big cost reduction when the work-in-progress is perishable and needs constant attention [such as patients lying on A&E trolleys and in hospital beds].

So what was the cost of re-designing this schedule?

A pinch of humility. A few bits of squared paper and some coloured pens. A couple hours of time. And a one-off investment in learning how to do it.  Peanuts in comparison with the recurring benefit gained.

 

The Learning Labyrinth

Minecraft There is an amazing phenomenon happening right now – a whole generation of people are learning to become system designers and they are doing it by having fun.

There is a game called Minecraft which millions of people of all ages are rapidly discovering.  It is creative, fun and surprisingly addictive.

This is what it says on the website.

“Minecraft is a game about breaking and placing blocks. At first, people built structures to protect against nocturnal monsters, but as the game grew players worked together to create wonderful, imaginative things.”

The principle is that before you can build you have to dig … you have to gather the raw materials you need … and then you have to use what you have gathered in novel and imaginative ways.  You need tools too, and you need to learn what they are used for, and what they are useless for. And the quickest way to learn the necessary survival and creative  skills is by exploring, experimenting, seeking help, and sharing your hard-won knowledge and experience with others.

The same principles hold in the real world of Improvement Science.

The treasure we are looking for is less tangible though … but no less difficult to find … unless you know where to look.

The treasure we seek is learning; how to achieve significant and sustained improvement on all dimensions.

And there is a mountain of opportunity that we can mine into. It is called Reality.

And when we do that we uncover nuggets of knowledge, jewels of understanding, and pearls of wisdom.

There are already many tunnels that have been carved out by others who have gone before us. They branch and join to form a vast cave network. A veritable labyrinth. Complicated and not always well illuminated or signposted.

And stored in the caverns is a vast treasure trove of experience we can dip into – and an even greater horde of new treasure waiting to be discovered.

But even now there there is no comprehensive map of the labyrinth. So it is easy to get confused and to get lost. Not all junctions have signposts and not all the signposts are correct. There are caves with many entrances and exits, there are blind-ending tunnels, and there are many hazards and traps for the unwary.

So to enter the Learning Labyrinth and to return safety with Improvement treasure we need guides. Those who know the safe paths and the unsafe ones. And as we explore we all need to improve the signage and add warning signs where hazards lurk.

And we need to work at the edge of knowledge  to extend the tunnels further. We need to seal off the dead-ends, and to draw and share up-to-date maps of the paths.

We need to grow a Community of Improvement Science Minecrafters.

And the first things we need are some basic improvement tools and techniques … and they can be found here.

Reducing Avoidable Harm

patient_stumbling_with_bandages_150_wht_6861Primum non nocere” is Latin for “First do no harm”.

It is a warning mantra that had been repeated by doctors for thousands of years and for good reason.

Doctors  can be bad for your health.

I am not referring to the rare case where the doctor deliberately causes harm.  Such people are criminals and deserve to be in prison.

I am referring to the much more frequent situation where the doctor has no intention to cause harm – but harm is the outcome anyway.

Very often the risk of harm is unavoidable. Healthcare is a high risk business. Seriously unwell patients can be very unstable and very unpredictable.  Heroic efforts to do whatever can be done can result in unintended harm and we have to accept those risks. It is the nature of the work.  Much of the judgement in healthcare is balancing benefit with risk on a patient by patient basis. It is not an exact science. It requires wisdom, judgement, training and experience. It feels more like an art than a science.

The focus of this essay is not the above. It is on unintentionally causing avoidable harm.

Or rather unintentionally not preventing avoidable harm which is not quite the same thing.

Safety means prevention of avoidable harm. A safe system is one that does that. There is no evidence of harm to collect. A safe system does not cause harm. Never events never happen.

Safe systems are designed to be safe.  The root causes of harm are deliberately designed out one way or another.  But it is not always easy because to do that we need to understand the cause-and-effect relationships that lead to unintended harm.  Very often we do not.


In 1847 a doctor called Ignaz Semmelweis made a very important discovery. He discovered that if the doctors and medical students washed their hands in disinfectant when they entered the labour ward, then the number of mothers and babies who died from infection was reduced.

And the number dropped a lot.

It fell from an annual average of 10% to less than 2%!  In really bad months the rate was 30%.

The chart below shows the actual data plotted as a time-series chart. The yellow flag in 1848 is just after Semmelweis enforced a standard practice of hand-washing.

Vienna_Maternal_Mortality_1785-1848

Semmelweis did not know the mechanism though. This was not a carefully designed randomised controlled trial (RCT). He was desperate. And he was desperate because this horrendous waste of young lives was only happening on the doctors ward.  On the nurses ward, which was just across the corridor, the maternal mortality was less than 2%.

The hospital authorities explained it away as ‘bad air’ from outside. That was the prevailing belief at the time. Unavoidable. A risk that had to be just accepted.

Semmeleis could not do a randomized controlled trial because they were not invented until a century later.

And Semmelweis suspected that the difference between the mortality on the nurses and the doctors wards was something to do with the Mortuary. Only the doctors performed the post-mortems and the practice of teaching anatomy to medical students using post-mortem dissection was an innovation pioneered in Vienna in 1823 (the first yellow flag on the chart above). But Semmelweis did not have this data in 1847.  He collated it later and did not publish it until 1861.

What Semmelweis demonstrated was the unintended and avoidable deaths were caused by ignorance of the mechanism of how microorganisms cause disease. We know that now. He did not.

It would be another 20 years before Louis Pasteur demonstrated the mechanism using the famous experiment with the swan neck flask. Pasteur did not discover microorganisms;  he proved that they did not appear spontaneously in decaying matter as was believed. He proved that by killing the bugs by boiling, the broth in the flask  stayed fresh even though it was exposed to the air. That was a big shock but it was a simple and repeatable experiment. He had a mechanism. He was believed. Germ theory was born. A Scottish surgeon called Joseph Lister read of this discovery and surgical antisepsis was born.

Semmelweis suspected that some ‘agent’ may have been unwittingly transported from the dead bodies to the live mothers and babies on the hands of the doctors.  It was a deeply shocking suggestion that the doctors were unwittingly killing their patients.

The other doctors did not take this suggestion well. Not well at all. They went into denial. They discounted the message and they discharged the messenger. Semmelweis never worked in Vienna again. He went back to Hungary and repeated the experiment. It worked.


Even today the message that healthcare practitioners can unwittingly bring avoidable harm to their patients is disturbing. We still seek solace in denial.

Hospital acquired infections (HAI) are a common cause of harm and many are avoidable using simple, cheap and effective measures such as hand-washing.

The harm does not come from what we do. It comes from what we do not do. It happens when we omit to follow the simple safety measures that have be proven to work. Scientifically. Statistically Significantly. Understood and avoidable errors of omission.


So how is this “statistically significant scientific proof” acquired?

By doing experiments. Just like the one Ignaz Semmelweis conducted. But the improvement he showed was so large that it did not need statistical analysis to validate it.  And anyway such analysis tools were not available in 1847. If they had been he might have had more success influencing his peers. And if he had achieved that goal then thousands, if not millions, of deaths from hospital acquired infections may have been prevented.  With the clarity of hindsight we now know this harm was avoidable.

No. The problem we have now is because the improvement that follows a single intervention is not very large. And when the causal mechanisms are multi-factorial we need more than one intervention to achieve the improvement we want. The big reduction in avoidable harm. How do we do that scientifically and safely?


About 20% of hospital acquired infections occur after surgical operations.

We have learned much since 1847 and we have designed much safer surgical systems and processes. Joseph Lister ushered in the era of safe surgery, much has happened since.

We routinely use carefully designed, ultra-clean operating theatres, sterilized surgical instruments, gloves and gowns, and aseptic techniques – all to reduce bacterial contamination from outside.

But surgical site infections (SSIs) are still common place. Studies show that 5% of patients on average will suffer this complication. Some procedures are much higher risk than others, despite the precautions we take.  And many surgeons assume that this risk must just be accepted.

Others have tried to understand the mechanism of SSI and their research shows that the source of the infections is the patients themselves. We all carry a ‘bacterial flora’ and normally that is no problem. Our natural defense – our skin – is enough.  But when that biological barrier is deliberately breached during a surgical operation then we have a problem. The bugs get in and cause mischief. They cause surgical site infections.

So we have done more research to test interventions to prevent this harm. Each intervention has been subject to well-designed, carefully-conducted, statistically-valid and very expensive randomized controlled trials.  And the results are often equivocal. So we repeat the trials – bigger, better controlled trials. But the effects of the individual interventions are small and they easily get lost in the noise. So we pool the results of many RCTs in what is called a ‘meta-analysis’ and the answer from that is very often ‘not proven’ – either way.  So individual surgeons are left to make the judgement call and not surprisingly there is wide variation in practice.  So is this the best that medical science can do?

No. There is another way. What we can do is pool all the learning from all the trials and design a multi-facetted intervention. A bundle of care. And the idea of a bundle is that the  separate small effects will add or even synergise to create one big effect.  We are not so much interested in the mechanism as the outcome. Just like Ignaz Semmelweiss.

And we can now do something else. We can test our bundle of care using statistically robust tools that do not require a RCT.  They are just as statistically valid as a RCT but a different design.

And the appropriate tool for this to measure the time interval between adverse the events  – and then to plot this continuous metric as a time-series chart.

But we must be disciplined. First we must establish the baseline average interval and then we introduce our bundle and then we just keep measuring the intervals.

If our bundle works then the interval between the adverse events gets longer – and we can easily prove that using our time-series chart. The longer the interval the more ‘proof’ we have.  In fact we can even predict how long we need to observe to prove that ‘no events’ is a statistically significant improvement. That is an elegant an efficient design.


Here is a real and recent example.

The time-series chart below shows the interval in days between surgical site infections following routine hernia surgery. These are not life threatening complications. They rarely require re-admission or re-operation. But they are disruptive for patients. They cause pain, require treatment with antibiotics, and the delay recovery and return to normal activities. So we would like to avoid them if possible.

Hernia_SSI_CareBundle

The green and red lines show the baseline period. The  green line says that the average interval between SSIs is 14 days.  The red line says that an interval more than about 60 days would be surprisingly long: valid statistical evidence of an improvement.  The end of the green and red lines indicates when the intervention was made: when the evidence-based designer care bundle was adopted together with the discipline of applying it to every patient. No judgement. No variation.

The chart tells the story. No complicated statistical analysis is required. It shows a statistically significant improvement.  And the SSI rate fell by over 80%. That is a big improvement.

We still do not know how the care bundle works. We do not know which of the seven simultaneous simple and low-cost interventions we chose are the most important or even if they work independently or in synergy.  Knowledge of the mechanism was not our goal.

Our goal was to improve outcomes for our patients – to reduce avoidable harm – and that has been achieved. The evidence is clear.

That is Improvement Science in action.

And to read the full account of this example of the Science of Improvement please go to:

http://www.journalofimprovementscience.org

It is essay number 18.

And avoid another error of omission. If you have read this far please share this message – it is important.

The Battle of the Chimps

Chimp_BattleImprovement implies change.
Change implies action.
Action implies decision.

So how is the decision made?
With Urgency?
With Understanding?

Bitter experience teaches us that often there is an argument about what to do and when to do it.  An argument between two factions. Both are motivated by a combination of anger and fear. One side is motivated more by anger than fear. They vote for action because of the urgency of the present problem. The other side is motivated more by fear than anger. They vote for inaction because of their fear of future failure.

The outcome is unhappiness for everyone.

If the ‘action’ party wins the vote and a failure results then there is blame and recrimination. If the ‘inaction’ party wins the vote and a failure results then there is blame and recrimination. If either party achieves a success then there is both gloating and resentment. Lose Lose.

The issue is not the decision and how it is achieved.The problem is the battle.

Dr Steve Peters is a psychiatrist with 30 years of clinical experience.  He knows how to help people succeed in life through understanding how the caveman wetware between their ears actually works.

In the run up to the 2012 Olympic games he was the sports psychologist for the multiple-gold-medal winning UK Cycling Team.  The World Champions. And what he taught them is described in his book – “The Chimp Paradox“.

Chimp_Paradox_SmallSteve brilliantly boils the current scientific understanding of the complexity of the human mind down into a simple metaphor.

One that is accessible to everyone.

The metaphor goes like this:

There are actually two ‘beings’ inside our heads. The Chimp and the Human. The Chimp is the older, stronger, more emotional and more irrational part of our psyche. The Human is the newer, weaker, logical and rational part.  Also inside there is the Computer. It is just a memory where both the Chimp and the Human store information for reference later. Beliefs, values, experience. Stuff like that. Stuff they use to help them make decisions.

And when some new information arrives through our senses – sight and sound for example – the Chimp gets first dibs and uses the Computer to look up what to do.  Long before the Human has had time to analyse the new information logically and rationally. By the time the Human has even started on solving the problem the Chimp has come to a decision and signaled it to the Human and associated it with a strong emotion. Anger, Fear, Excitement and so on. The Chimp operates on basic drives like survival-of-the-self and survival-of-the-species. So if the Chimp gets spooked or seduced then it takes control – and it is the stronger so it always wins the internal argument.

But the human is responsible for the actions of the Chimp. As Steve Peters says ‘If your dog bites someone you cannot blame the dog – you are responsible for the dog‘.  So it is with our inner Chimps. Very often we end up apologising for the bad behaviour of our inner Chimp.

Because our inner Chimp is the stronger we cannot ‘control’ it by force. We have to learn how to manage the animal. We need to learn how to soothe it and to nurture it. And we need to learn how to remove the Gremlins that it has programmed into the Computer. Our inner Chimp is not ‘bad’ or ‘mad’ it is just a Chimp and it is an essential part of us.

Real chimpanzees are social, tribal and territorial.  They live in family groups and the strongest male is the boss. And it is now well known that a troop of chimpanzees in the wild can plan and wage battles to acquire territory from neighbouring troops. With casualties on both sides.  And so it is with people when their inner Chimps are in control.

Which is most of the time.

Scenario:
A hospital is failing one of its performance targets – the 18 week referral-to-treatment one – and is being threatened with fines and potential loss of its autonomy. The fear at the top drives the threat downwards. Operational managers are forced into action and do so using strategies that have not worked in the past. But they do not have time to learn how to design and test new ones. They are bullied into Plan-Do mode. The hospital is also required to provide safe care and the Plan-Do knee-jerk triggers fear-of-failure in the minds of the clinicians who then angrily oppose the diktat or quietly sabotage it.

This lose-lose scenario is being played out  in  100’s if not 1000’s of hospitals across the globe as we speak.  The evidence is there for everyone to see.

The inner Chimps are in charge and the outcome is a turf war with casualties on all sides.

So how does The Chimp Paradox help dissolve this seemingly impossible challenge?

First it is necessary to appreciate that both sides are being controlled by their inner Chimps who are reacting from a position of irrational fear and anger. This means that everyone’s behaviour is irrational and their actions likely to be counter-productive.

What is needed is for everyone to be managing their inner Chimps so that the Humans are back in control of the decision making. That way we get wise decisions that lead to effective actions and win-win outcomes. Without chaos and casualties.

To do this we all need to learn how to manage our own inner Chimps … and that is what “The Chimp Paradox” is all about. That is what helped the UK cyclists to become gold medalists.

In the scenario painted above we might observe that the managers are more comfortable in the Pragmatist-Activist (PA) half of the learning cycle. The Plan-Do part of PDSA  – to translate into the language of improvement. The clinicians appear more comfortable in the Reflector-Theorist (RT) half. The Study-Act part of PDSA.  And that difference of preference is fueling the firestorm.

Improvement Science tells us that to achieve and sustain improvement we need all four parts of the learning cycle working  smoothly and in sequence.

So what at first sight looks like it must be pitched battle which will result in two losers; in reality is could be a three-legged race that will result in everyone winning. But only if synergy between the PA and the RT halves can be achieved.

And that synergy is achieved by learning to respect, understand and manage our inner Chimps.

Rocket Science

ViewFromSpaceThis is a picture of Chris Hadfield. He is an astronaut and to prove it here he is in the ‘cupola’ of the International Space Station (ISS). Through the windows is a spectacular view of the Earth from space.

Our home seen from space.

What is remarkable about this image is that it even exists.

This image is tangible evidence of a successful outcome of a very long path of collaborative effort by 100’s of 1000’s of people who share a common dream.

That if we can learn to overcome the challenge of establishing a permanent manned presence in space then just imagine what else we might achieve?

Chis is unusual for many reasons.  One is that he is Canadian and there are not many Canadian astronauts. He is also the first Canadian astronaut to command the ISS.  Another claim to fame is that when he recently lived in space for 5 months on the ISS, he recorded a version of David Bowie’s classic song – for real – in space. To date this has clocked up 21 million YouTube hits and had helped to bring the inspiring story of space exploration back to the public consciousness.

Especially the next generation of explorers – our children.

Chris has also written a book ‘An Astronaut’s View of Life on Earth‘ that tells his story. It describes how he was inspired at a young age by seeing the first man to step onto the Moon in 1969.  He overcame seemingly impossible obstacles to become an astronaut, to go into space, and to command the ISS.  The image is tangible evidence.

We all know that space is a VERY dangerous place.  I clearly remember the two space shuttle disasters. There have been many other much less public accidents.  Those tragic events have shocked us all out of complacency and have created a deep sense of humility in those who face up to the task of learning to overcome the enormous technical and cultural barriers.

Getting six people into space safely, staying there long enough to conduct experiments on the long-term effects of weightlessness, and getting them back again safely is a VERY difficult challenge.  And it has been overcome. We have the proof.

Many of the seemingly impossible day-to-day problems that we face seem puny in comparison.

For example: getting every patient into hospital, staying there just long enough to benefit from cutting edge high-technology healthcare, and getting them back home again safely.

And doing it repeatedly and consistently so that the system can be trusted and we are not greeted with tragic stories every time we open a newspaper. Stories that erode our trust in the ability of groups of well-intended people to do anything more constructive than bully, bicker and complain.

So when the exasperated healthcare executive exclaims ‘Getting 95% of emergency admissions into hospital in less than 4 hours is not rocket science!‘ – then perhaps a bit more humility is in order. It is rocket science.

Rocket science is Improvement science.

And reading the story of a real-life rocket-scientist might be just the medicine our exasperated executives need.

Because Chris explains exactly how it is done.

And he is credible because he has walked-the-talk so he has earned the right to talk-the-walk.

The least we can do is listen and learn.

Here is is Chris answering the question ‘How to achieve an impossible dream?

Navigating the Nerve Curve

Nerve_CurveThe emotional roller-coaster ride that is associated with change, learning and improvement is called the Nerve Curve.

We are all very familiar with the first stages – of Shock, Denial, Anger, Bargaining, Depression and Despair.  We are less familiar with the stages associated with the long climb out to Resolution: because most improvement initiatives fail for one reason of another.

The critical first step is to “Disprove Impossibility” and this is the first injection of innovation. Someone (the ‘innovator’) discovers that what was believed to be impossible is not. They only have to have one example too. One Black Swan.

The tougher task is to influence those languishing in the ‘Depths of Despair’ that there is hope and that there is a ‘how’. This is not easy because cynicism is toxic to innovation.  So an experienced Improvement Science Practitioner (ISP) bypasses the cynics and engages with the depressed-but-still-healthy-sceptics.

The challenge now is how to get a shed load of them up the hill.

When we first learn to drive we start on the flat, not on hills,  for a very good reason. Safety.

We need to learn to become confident with the controls first. The brake, the accelerator, the clutch and the steering wheel.  This takes practice until it is comfortable, unconscious and almost second nature. We want to achieve a smooth transition from depression to delight, not chaotic kangaroo jumps!

Only when we can do that on the flat do we attempt a hill-start. And the key to a successful hill start is the sequence.  Hand brake on  for safety, out of gear, engine running, pointing at the goal. Then we depress the clutch and select a low gear – we do not want to stall. Speed is not the goal. Safety comes first. Then we rev the engine to give us the power we need to draw on. Then we ease the clutch until the force of the engine has overcome the force of gravity and we feel the car wanting to move forward. And only then do we ease the handbrake off, let the clutch out more and hit the gas to keep the engine revs in the green.

So when we are planning to navigate a group of healthy sceptics up the final climb of the Nerve Curve we need to plan and prepare carefully.

What is least likely to be successful?

Well, if all we have is our own set of wheels,  a cheap and cheerful mini-motor, then it is not going to be a good idea to shackle a trailer to it; fill the trailer with sceptics and attempt a hill start. We will either stall completely or burn out our clutch. We may even be dragged backwards into the Cynic Infested Toxic Swamp.

So what if we hire a bus, load up our sceptical passengers, and have a go.  We may be lucky –  but if we have no practice doing hill starts with a full bus then we could be heading for disappointment; or disaster.

So what is a safer plan:
1) First we need to go up the mountain ourselves to demonstrate it is possible.
2) Then we take one or two of the least sceptical up in our car to show it is safe.
3) We then invite those sceptics with cars to learn how to do safe hill starts.
4) Finally we ask the ex-sceptics to teach the fresh-sceptics how to do it.

Brmmmm Brmmmm. Off we go.

The Time Trap

clock_hands_spinning_import_150_wht_3149[Hmmmmmm]

The desk amplified the vibration of Bob’s smartphone as it signaled the time for his planned e-mentoring session with Leslie.

<Bob> Hi Leslie, right-on-time, how are you today?

<Leslie> Good thanks Bob. I have a specific topic to explore if that is OK. Can we talk about time traps.

<Bob> OK – do you have a specific reason for choosing that topic?

<Leslie> Yes. The blog last week about ‘Recipe for Chaos‘ set me thinking and I remembered that time-traps were mentioned in the FISH course but I confess, at the time, I did not understand them. I still do not.

<Bob> Can you describe how the ‘Recipe for Chaos‘ blog triggered this renewed interest in time-traps?

<Leslie> Yes – the question that occurred to me was: ‘Is a time-trap a recipe for chaos?’

<Bob> A very good question! What do you feel the answer is?

<Leslie> I feel that time-traps can and do trigger chaos but I cannot explain how. I feel confused.

<Bob> Your intuition is spot on – so can you localize the source of your confusion?

<Leslie> OK. I will try. I confess I got the answer to the MCQ correct by guessing – and I wrote down the answer when I eventually guessed correctly – but I did not understand it.

<Bob> What did you write down?

<Leslie> “The lead time is independent of the flow”.

<Bob> OK. That is accurate – though I agree it is perhaps a bit abstract. One source of confusion may be that there are different causes of time-traps and there is a lot of overlap with other chaos-creating policies. Do you have a specific example we can use to connect theory with reality?

<Leslie> OK – that might explain my confusion.  The example that jumped to mind is the RTT target.

<Bob> RTT?

<Leslie> Oops – sorry – I know I should not use undefined abbreviations. Referral to Treatment Time.

<Bob> OK – can you describe what you have mapped and measured already?

<Leslie> Yes.  When I plot the lead-time for patients in date-of-treatment order the process looks stable but the histogram is multi-modal with a big spike just underneath the RTT target of 18 weeks. What you describe as the ‘Horned Gaussian’ – the sign that the performance target is distorting the behaviour of the system and the design of the system is not capable on its own.

<Bob> OK, and have you investigated why there is not just one spike?

<Leslie> Yes – the factor that best explains that is the ‘priority’ of the referral.  The  ‘urgents’ jump in front of the ‘soons’ and both jump in front of the ‘routines’. The chart has three overlapping spikes.

<Bob> That sounds like a reasonable policy for mixed-priority demand. So what is the problem?

<Leslie> The ‘Routine’ group is the one that clusters just underneath the target. The lead time for routines is almost constant but most of the time those patients sit in one queue or another being leap-frogged by other higher-priority patients. Until they become high-priority – then they do the leap frogging.

<Bob> OK – and what is the condition for a time trap again?

<Leslie> That the lead time is independent of flow.

<Bob> Which implies?

<Leslie> Um. Let me think. That the flow can be varying but the lead time stays the same?

<Bob> Yup. So is the flow of routine referrals varying?

<Leslie> Not over the long term. The chart is stable.

<Bob> What about over the short term? Is demand constant?

<Leslie> No of course not – it varies – but that is expected for all systems. Constant means ‘over-smoothed data’ – the Flaw of Averages trap!

<Bob> OK. And how close is the average lead time for routines to the RTT maximum allowable target?

<Leslie> Ah! I see what you mean. The average is about 17 weeks and the target is 18 weeks.

<Bob> So, what is the flow variation on a week-to-week time scale?

<Leslie> Demand or Activity?

<Bob> Both.

<Leslie> H’mm – give me a minute to re-plot flow as a weekly-aggregated chart. Oh! I see what you mean – both the weekly activity and demand are both varying widely and they are not in sync with each other. Work in progress must be wobbling up and down a lot! So how can the lead time variation be so low?

<Bob> What do the flow histograms look like?

<Leslie> Um. Just a second. That is weird! They are both bi-modal with peaks at the extremes and not much in the middle – the exact opposite of what I expected to see! I expected a centered peak.

<Bob> What you are looking at is the characteristic flow fingerprint of a chaotic system – it is called ‘thrashing’.

<Leslie> So, I was right!

<Bob> Yes. And now you know the characteristic pattern to look for. So, what is the policy design flaw here?

<Leslie> The DRAT – the delusional ratio and arbitrary target?

<Bob> That is part of it – that is the external driver policy. The one you cannot change easily. What is the internally driven policy? The reaction to the DRAT?

<Leslie> The policy of leaving routine patients until they are about to breach then re-classifying them as ‘urgent’.

<Bob> Yes! It is called a ‘Prevarication Policy’ and it is surprisingly and uncomfortably common. Ask yourself – do you ever prevaricate? Do you ever put off ‘lower priority’ tasks until later and then not fill the time freed up with ‘higher priority tasks’?

<Leslie> OMG! I do that all the time! I put low priority and unexciting jobs on a ‘to do later’ heap but I do not sit idle – I do then focus on the high priority ones.

<Bob> High priority for whom?

<Leslie> Ah! I see what you mean. High priority for me. The ones that give me the biggest reward! The fun stuff or the stuff that I get a pat on the back for doing or that I feel good about.

<Bob> And what happens?

<Leslie> The heap of ‘no-fun-for-me-to-do’ jobs gets bigger and I await the ‘reminders’ and then have to rush round in a mad panic to avoid disappointment, criticism and blame. It feels chaotic. I get grumpy. I make more mistakes and I deliver lower-quality work. If I do not get a reminder I assume that the job was not that urgent after all and if I am challenged I claim I am too busy doing the other stuff.

<Bob> And have you avoided disappointment?

<Leslie> Ah! No – that I needed to be reminded meant that I had already disappointed. And when I do not get a reminded does not prove I have not disappointed either. Most people blame rather than complain. I have just managed to erode other people’s trust in my reliability. I have disappointed myself. I have achieved exactly the opposite of what I intended. Drat!

<Bob> So, what is the reason that you work this way? There will be a reason.  A good reason.

<Leslie> That is a very good question! I will reflect on that because I believe it will help me understand why others behave this way too.

<Bob> OK – I will be interested to hear your conclusion.  Let us return to the question. What is the  downside of a ‘Prevarication Policy’?

<Leslie> It creates stress, chaos, fire-fighting, last minute changes, increased risk of errors,  more work and it erodes both quality, confidence and trust.

<Bob> Indeed so – and the impact on productivity?

<Leslie> The activity falls, the system productivity falls, revenue falls, queues increase, waiting times increase and the chaos increases!

<Bob> And?

<Leslie> We treat the symptoms by throwing resources at the problem – waiting list initiatives – and that pushes our costs up. Either way we are heading into a spiral of decline and disappointment. We do not address the root cause.

<Bob> So what is the way out of chaos?

<Leslie> Reduce the volume on the destabilizing feedback loop? Stop the managers meddling!

<Bob> Or?

<Leslie> Eh? I do not understand what you mean. The blog last week said management meddling was the problem.

<Bob> It is a problem. How many feedback loops are there?

<Leslie> Two – that need to be balanced.

<Bob> So, what is another option?

<Leslie> OMG! I see. Turn UP the volume of the stabilizing feedback loop!

<Bob> Yup. And that is a lot easier to do in reality. So, that is your other challenge to reflect on this week. And I am delighted to hear you using the terms ‘stabilizing feedback loop’ and ‘destabilizing feedback loop’.

<Leslie> Thank you. That was a lesson for me after last week – when I used the terms ‘positive and negative feedback’ it was interpreted in the emotional context – positive feedback as encouragement and negative feedback as criticism.  So ‘reducing positive feedback’ in that sense is the exact opposite of what I was intending. So I switched my language to using ‘stabilizing and destabilizing’ feedback loops that are much less ambiguous and the confusion and conflict disappeared.

<Bob> That is very useful learning Leslie … I think I need to emphasize that distinction more in the blog. That is one advantage of online media – it can be updated!

 <Leslie> Thanks again Bob!  And I have the perfect opportunity to test a new no-prevarication-policy design – in part of the system that I have complete control over – me!

The Recipe for Chaos

boxes_group_PA4_150_wht_4916There are only four ingredients required to create Chaos.

The first is Time.

All processes and systems are time-dependent.

The second ingredient is a Metric of Interest (MoI).

That means a system performance metric that is important to all – such as a Safety or Quality or Cost; and usually all three.

The third ingredient is a feedback loop of a specific type – it is called a Negative Feedback Loop.  The NFL  is one that tends to adjust, correct and stabilise the behaviour of the system.

Negative feedback loops are very useful – but they have a drawback. They resist change and they reduce agility. The name is also a disadvantage – the word ‘negative feedback’ is often associated with criticism.

The fourth and final ingredient in our Recipe for Chaos is also a feedback loop but one of a different design – a Positive Feedback Loop (PFL)- one that amplifies variation and change.

Positive feedback loops are also very useful – they are required for agility – quick reactions to unexpected events. Fast reflexes.

The downside of a positive feedback loop is that increases instability.

The name is also confusing – ‘positive feedback’ is associated with encouragement and praise.

So, in this context it is better to use the terms ‘stabilizing feedback’ and ‘destabilizing feedback’  loops.

When we mix these four ingredients in just the right amounts we get a system that may behave chaotically. That is surprising and counter-intuitive. But it is how the Universe works.

For example:

Suppose our Metric of Interest is the amount of time that patients spend in a Accident and Emergency Department. We know that the longer this time is the less happy they are and the higher the risk of avoidable harm – so it is a reasonable goal to reduce it.

Longer-than-possible waiting times have many root causes – it is a non-specific metric.  That means there are many things that could be done to reduce waiting time and the most effective actions will vary from case-to-case, day-to-day and even minute-to-minute.  There is no one-size-fits-all solution.

This implies that those best placed to correct the causes of these delays are the people who know the specific system well – because they work in it. Those who actually deliver urgent care. They are the stabilizing ingredient in our Recipe for Chaos.

The destabilizing ingredient is the hit-the-arbitrary-target policy which drives a performance management feedback loop.

This policy typically involves:
(1) Setting a performance target that is desirable but impossible for the current design to achieve reliably;
(2) inspecting how close to the target we are; then
(3) using the real-time data to justify threats of dire consequences for failure.

Now we have a perfect Recipe for Chaos.

The higher the failure rate the more inspections, reports, meetings, exhortations, threats, interruptions, and interventions that are generated.  Fear-fuelled management meddling. This behaviour consumes valuable time – so leaves less time to do the worthwhile work. Less time to devote to safety, flow, and quality. The queues build and the pressure increases and the system becomes hyper-sensitive to small fluctuations. Delays multiply and errors are more likely and spawn more workload, more delays and more errors.  Tempers become frayed and molehills are magnified into mountains. Irritations become arguments.  And all of this makes the problem worse rather than better. Less stable. More variable. More chaotic. More dangerous. More expensive.

It is actually possible to write a simple equation that captures this complex dynamic behaviour characteristic of real systems.  And that was a very surprising finding when it was discovered in 1976 by a mathematician called Robert May.

This equation is called the logistic equation.

Here is the abstract of his seminal paper.

Nature 261, 459-467 (10 June 1976)

Simple mathematical models with very complicated dynamics

First-order difference equations arise in many contexts in the biological, economic and social sciences. Such equations, even though simple and deterministic, can exhibit a surprising array of dynamical behaviour, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. There are consequently many fascinating problems, some concerned with delicate mathematical aspects of the fine structure of the trajectories, and some concerned with the practical implications and applications. This is an interpretive review of them.

The fact that this chaotic behaviour is completely predictable and does not need any ‘random’ element was a big surprise. Chaotic is not the same as random. The observed chaos in the urgent healthcare care system is the result of the design of the system – or more specifically the current healthcare system management policies.

This has a number of profound implications – the most important of which is this:

If the chaos we observe in our health care systems is the predictable and inevitable result of the management policies we ourselves have created and adopted – then eliminating the chaos will only require us to re-design these policies.

In fact we only need to tweak one of the ingredients of the Recipe for Chaos – such as to reduce the strength of the destabilizing feedback loop. The gain. The volume control on the variation amplifier!

This is called the MM factor – otherwise known as ‘Management Meddling‘.

We need to keep all four ingredients though – because we need our system to have both agility and stability.  It is the balance of ingredients that that is critical.

The flaw is not the Managers themselves – it is their learned behaviour – the Meddling.  This is learned so it can be unlearned. We need to keep the Managers but “tweak” their role slightly. As they unlearn their old habits they move from being ‘Policy-Enforcers and Fire-Fighters’ to becoming ‘Policy-Engineers and Chaos-Calmers’. They focus on learning to understand the root causes of variation that come from outside the circle of influence of the non-Managers.   They learn how to rationally and radically redesign system policies to achieve both agility and stability.

And doing that requires developing systemic-thinking and learning Improvement Science skills – because the causes of chaos are counter-intuitive. If it were intuitively-obvious we would have discovered the nature of chaos thousands of years ago. The fact that it was not discovered until 1976 demonstrates this fact.

It is our homo sapiens intuition that got us into this mess!  The inherent flaws of the chimp-ware between our ears.  Our current management policies are intuitively-obvious, collectively-agreed, rubber-stamped and wrong! They are part of the Recipe for Chaos.

And when we learn to re-design our system policies and upload the new system software then the chaos evaporates as if a magic wand had been waved.

And that comes as a really BIG surprise!

What also comes as a big surprise is just how small the counter-intuitive policy design tweaks often are.

Safe, smooth, efficient, effective, and productive flow is restored. Calm confidence reigns. Safety, Flow, Quality and Productivity all increase – at the same time.  The emotional storm clouds dissipate and the prosperity sun shines again.

Everyone feels better. Everyone. Patients, managers, and non-managers.

This is Win-Win-Win improvement by design. Improvement Science.

Temperament Treacle

stick_figure_help_button_150_wht_9911If the headlines in the newspapers are a measure of social anxiety then healthcare in the UK is in a state of panic: “Hospitals Fear The Winter Crisis Is Here Early“.

The Panic Button is being pressed and the Patient Safety Alarms are sounding.

Closer examination of the statement suggests that the winter crisis is not unexpected – it is just here early.  So we are assuming it will be worse than last year – which was bad enough.

The evidence shows this fear is well founded.  Last year was the worst on the last 5 years and this year is shaping up to be worse still.

So if it is a predictable annual crisis and we have a lot of very intelligent, very committed, very passionate people working on the problem – then why is it getting worse rather than better?

One possible factor is Temperament Treacle.

This is the glacially slow pace of effective change in healthcare – often labelled as “resistance to change” and implying deliberate scuppering of the change boat by powerful forces within the healthcare system.

Resistance to the flow of change is probably a better term. We could call that cultural viscosity.  Treacle has a very high viscosity – it resists flow.  Wading through treacle is very hard work. So pushing change though cultural treacle is hard work. Many give up in exhaustion after a while.

So why the term “Temperament Treacle“?

Improvement Science has three parts – Processes, Politics and Systems.

Process Science is applied physics. It is an objective, logical, rational science. The Laws of Physics are not negotiable. They are absolute.

Political Science is applied psychology. It is a subjective, illogical, irrational science. The Laws of People are totally negotiable.  They are arbitrary.

Systems Science is a combination of Physics and Psychology. A synthesis. A synergy. A greater-than-the-sum-of-the-parts combination.

The Swiss physician Carl Gustav Jung studied psychology – and in 1920 published “Psychological Types“.  When this ground-breaking work was translated into English in 1923 it was picked up by Katherine Cook Briggs and made popular by her daughter Isabel.  Isabel Briggs married Clarence Myers and in 1942 Isabel Myers learned about the Humm-Wadsworth Scale,  a tool for matching people with jobs. So using her knowledge of psychological type differences she set out to develop her own “personality sorting tool”. The first prototype appeared in 1943; in the 1950’s she tested the third iteration and measured the personality types of 5,355 medical students and over 10,000 nurses.   The Myers-Briggs Type Indicator was published 1962 and since then the MBTI® has been widely tested and validated and is the most extensively used personality type instrument. In 1980 Isabel Myers finished writing Gifts Differing just before she died at the age of 82 after a twenty year long battle with cancer.

The essence of Jung’s model is that an individual’s temperament is largely innate and the result of a combination of three dimensions:

1. The input or perceiving  process (P). The poles are Intuitor (N) or Sensor (S).
2. The decision or judging process (J). The poles are Thinker (T) or Feeler (F).
3. The output or doing process. The poles are Extraversion (E) or Intraversion (I).

Each of Jung’s dimensions had two “opposite” poles so when combined they gave eight types.  Isabel Myers, as a result of her extensive empirical testing, added a fourth dimension – which gives the four we see in the modern MBTI®.  The fourth dimension linked the other three together – it describes if the J or the P process is the one shown to the outside world. So the MBTI® has sixteen broad personality types.  In 1998 a book called “Please Understand Me II” written by David Keirsey, the MBTI® is put into an historical context and Keirsey concluded that there are four broad Temperaments – and these have been described since Ancient times.

When Isabel Myers measured different populations using her new tool she discovered a consistent pattern: that the proportions of the sixteen MBTI® types were consistent across a wide range of societies. Personality type is, as Jung had suggested, an innate part of the “human condition”. She also saw that different types clustered in different occupations. Finding the “right job” appeared to be a process of natural selection: certain types fitted certain roles better than others and people self-selected at an early age.  If their choice was poor then the person would be unhappy and would not achieve their potential.

Isabel’s work also showed that each type had both strengths and weaknesses – and that people performed better and felt happier when their role played to their temperament strengths.  It also revealed that considerable conflict could be attributed to type-mismatch.  Polar opposite types have the least psychological “common ground” – so when they attempt to solve a common problem they do so by different routes and using different methods and language. This generates confusion and conflict.  This is why Isabel Myers gave her book the title of “Gifts Differing” and her message was that just having awareness of and respect for the innate type differences was a big step towards reducing the confusion and conflict.

So what relevance does this have to change and improvement?

Well it turns out that certain types are much more open to change than others and certain types are much more resistant.  If an organisation, by the very nature of its work, attracts the more change resistant types then that organisation will be culturally more viscous to the flow of change. It will exhibit the cultural characteristics of temperament treacle.

The key to understanding Temperament and the MBTI® is to ask a series of questions:

Q1. Does the person have the N or S preference on their perceiving function?

A1=N then Q2: Does the person have a T or F preference on their judging function?
A2=T gives the xNTx combination which is called the Rational or phlegmatic temperament.
A2=F gives the xNFx combination which is called the Idealist or choleric temperament.

A1=S then Q3: Does the person show a J or P preference to the outside world?
A3=J gives the xSxJ combination which is called the Guardian or melancholic temperament.
A3=P gives the xSxP combination which is called the Artisan or sanguine temperament.

So which is the most change resistant temperament?  The answer may not be a big surprise. It is the Guardians. The melancholics. The SJ’s.

Bureaucracies characteristically attract SJ types. The upside is that they ensure stability – the downside is that they prevent agility.  Bureaucracies block change.

The NF Idealists are the advocates and the mentors: they love initiating and facilitating transformations with the dream of making the world a better place for everyone. They light the emotional bonfire and upset the apple cart. The NT Rationals are the engineers and the architects. They love designing and building new concepts and things – so once the Idealists have cracked the bureaucratic carapace they can swing into action. The SP Sanguines are the improvisors and expeditors – they love getting the new “concept” designs to actually work in the messy real world.

Unfortunately the grand designs dreamed up by the ‘N’s often do not work in practice – and the scene is set for the we-told-you-so game, and the name-shame-blame game.

So if initiating and facilitating change is the Achilles Heel of the SJ’s then what is their strength?

Let us approach this from a different perspective:

Let us put ourselves in the shoes of patients and ask ourselves: “What do we want from a System of Healthcare and from those who deliver that care – the doctors?”

1. Safe?
2. Reliable?
3. Predictable?
4. Decisive?
5. Dependable?
6. All the above?

These are the strengths of the SJ temperament. So how do doctors measure up?

In a recent observational study, 168 doctors who attended a leadership training course completed their MBTI® self-assessments as part of developing insight into temperament from the perspective of a clinical leader.  From the collective data we can answer our question: “Are there more SJ types in the medical profession than we would expect from the general population?”

Doctor_Temperament The table shows the results – 60% of doctors were SJ compared with 35% expected for the general population.

Statistically this is highly significant difference (p<0.0001). Doctors are different.

It is of enormous practical importance well.

We are reassured that the majority of doctors have a preference for the very traits that patients want from them. That may explain why the Medical Profession always ranks highest in the league table of “trusted professionals”. We need to be able to trust them – it could literally be a matter of life or death.

The table also shows where the doctors were thin on the ground: in the mediating, improvising, developing, constructing temperaments. The very set of skills needed to initiate and facilitate effective and sustained change.

So when the healthcare system is lurching from one predictable crisis to another – the innate temperament of the very people we trust to deliver our health care are the least comfortable with changing the system of care itself.

That is a problem. A big problem.

Studies have show that when we get over-stressed, fearful and start to panic then in a desperate act of survival we tend to resort to the aspects of our temperament that are least well developed.  An SJ who is in panic-mode may resort to NP tactics: opinion-led purposeless conceptual discussion and collective decision paralysis. This is called the “headless chicken and rabbit in the headlights” mode. We have all experienced it.

A system that is no longer delivering fit-for-purpose performance because its purpose has shifted requires redesign.  The temperament treacle inhibits the flow of change so the crisis is not averted. The crisis happens, invokes panic and triggers ineffective and counter-productive behaviour. The crisis deepens and performance can drop catastrophically when the red tape is cut. It was the only thing holding the system together!

But while the bureaucracy is in disarray then innovation can start to flourish. And the next cycle starts.

It is a painful, slow, wasteful process called “reactionary evolution by natural selection“.

Improvement Science is different. It operates from a “proactive revolution through collective design” that is enjoyable, quick and efficient but it requires mastery of synergistic political science and process science. We do not have that capability – yet.

The table offers some hope.  It shows the majority of doctors are xSTJ.  They are Logical Guardians. That means that they solve problems using tried-tested-and-trustworthy logic. So they have no problem with the physics. Show them how to diagnose and design processes and they are inside their comfort zone.

Their collective weak spot is managing the politics – the critical cultural dimension of change. Often the result is manipulation rather than motivation. It does not work. The improvement stalls. Cynicism increases. The treacle gets thicker.

System-redesign requires synergistic support, development, improvisation and mediation. These strengths do exist in the medical profession – but they appear to be in short supply – so they need to be identified, and nurtured.  And change teams need to assemble and respect the different gifts.

One further point about temperament.  It is not immutable. We can all develop a broader set of MBTI® capabilities with guidance and practice – especially the ones that fill the gaps between xSTJ and xNFP.  Those whose comfort zone naturally falls nearer the middle of the four dimensions find this easier. And that is one of the goals of Improvement Science training.

Sorting_HatAnd if you are in a hurry then you might start today by identifying the xSFJ “supporters” and the xNFJ “mentors” in your organisation and linking them together to build a temporary bridge over the change culture chasm.

So to find your Temperament just click here to download the Temperament Sorter.

The Mirror

mirror_mirror[Dring Dring]

The phone announced the arrival of Leslie for the weekly ISP mentoring conversation with Bob.

<Leslie> Hi Bob.

<Bob> Hi Leslie. What would you like to talk about today?

<Leslie> A new challenge – one that I have not encountered before.

<Bob>Excellent. As ever you have pricked my curiosity. Tell me more.

<Leslie> OK. Up until very recently whenever I have demonstrated the results of our improvement work to individuals or groups the usual response has been “Yes, but“. The habitual discount as you call it. “Yes, but your service is simpler; Yes, but your budget is bigger; Yes, but your staff are less militant.” I have learned to expect it so I do not get angry any more.

<Bob> OK. The mantra of the skeptics is to be expected and you have learned to stay calm and maintain respect. So what is the new challenge?

<Leslie>There are two parts to it.  Firstly, because the habitual discounting is such an effective barrier to diffusion of learning;  our system has not changed; the performance is steadily deteriorating; the chaos is worsening and everything that is ‘obvious’ has been tried and has not worked. More red lights are flashing on the patient-harm dashboard and the Inspectors are on their way. There is an increasing  turnover of staff at all levels – including Executive.  There is an anguished call for “A return to compassion first” and “A search for new leaders” and “A cultural transformation“.

<Bob> OK. It sounds like the tipping point of awareness has been reached, enough people now appreciate that their platform is burning and radical change of strategy is required to avoid the ship sinking and them all drowning. What is the second part?

<Leslie> I am getting more emails along the line of “What would you do?

<Bob> And your reply?

<Leslie> I say that I do not know because I do not have a diagnosis of the cause of the problem. I do know a lot of possible causes but I do not know which plausible ones are the actual ones.

<Bob> That is a good answer.  What was the response?

<Leslie>The commonest one is “Yes, but you have shown us that Plan-Do-Study-Act is the way to improve – and we have tried that and it does not work for us. So we think that improvement science is just more snake oil!”

<Bob>Ah ha. And how do you feel about that?

<Leslie>I have learned the hard way to respect the opinion of skeptics. PDSA does work for me but not for them. And I do not understand why that is. I would like to conclude that they are not doing it right but that is just discounting them and I am wary of doing that.

<Bob>OK. You are wise to be wary. We have reached what I call the Mirror-on-the-Wall moment.  Let me ask what your understanding of the history of PDSA is?

<Leslie>It was called Plan-Do-Check-Act by Walter Shewhart in the 1930’s and was presented as a form of the scientific method that could be applied on the factory floor to improving the quality of manufactured products.  W Edwards Deming modified it to PDSA where the “Check” was changed to “Study”.  Since then it has been the key tool in the improvement toolbox.

<Bob>Good. That is an excellent summary.  What the Zealots do not talk about are the limitations of their wonder-tool.  Perhaps that is because they believe it has no limitations.  Your experience would seem to suggest otherwise though.

<Leslie>Spot on Bob. I have a nagging doubt that I am missing something here. And not just me.

<Bob>The reason PDSA works for you is because you are using it for the purpose it was designed for: incremental improvement of small bits of the big system; the steps; the points where the streams cross the stages.  You are using your FISH training to come up with change plans that will work because you understand the Physics of Flow better. You make wise improvement decisions.  In fact you are using PDSA in two separate modes: discovery mode and delivery mode.  In discovery mode we use the Study phase to build your competence – and we learn most when what happens is not what we expected.  In delivery mode we use the Study phase to build our confidence – and that grows most when what happens is what we predicted.

<Leslie>Yes, that makes sense. I see the two modes clearly now you have framed it that way – and I see that I am doing both at the same time, almost by second nature.

<Bob>Yes – so when you demonstrate it you describe PDSA generically – not as two complimentary but contrasting modes. And by demonstrating success you omit to show that there are some design challenges that cannot be solved with either mode.  That hidden gap attracts some of the “Yes, but” reactions.

<Leslie>Do you mean the challenges that others are trying to solve and failing?

<Bob>Yes. The commonest error is to discount the value of improvement science in general; so nothing is done and the inevitable crisis happens because the system design is increasingly unfit for the evolving needs.  The toast is not just burned it is on fire and is now too late to  use the discovery mode of PDSA because prompt and effective action is needed.  So the delivery mode of PDSA is applied to a emergent, ill-understood crisis. The Plan is created using invalid assumptions and guesswork so it is fundamentally flawed and the Do then just makes the chaos worse.  In the ensuing panic the Study and Act steps are skipped so all hope of learning is lost and and a vicious and damaging spiral of knee-jerk Plan-Do-Plan-Do follows. The chaos worsens, quality falls, safety falls, confidence falls, trust falls, expectation falls and depression and despair increase.

<Leslie>That is exactly what is happening and why I feel powerless to help. What do I do?

<Bob>The toughest bit is past. You have looked squarely in the mirror and can now see harsh reality rather than hasty rhetoric. Now you can look out of the window with different eyes.  And you are now looking for a real-world example of where complex problems are solved effectively and efficiently. Can you think of one?

<Leslie>Well medicine is one that jumps to mind.  Solving a complex, emergent clinical problems requires a clear diagnosis and prompt and effective action to stabilise the patient and then to cure the underlying cause: the disease.

<Bob>An excellent example. Can you describe what happens as a PDSA sequence?

<Leslie>That is a really interesting question.  I can say for starters that it does not start with P – we have learned are not to have a preconceived idea of what to do at the start because it badly distorts our clinical judgement.  The first thing we do is assess the patient to see how sick and unstable they are – we use the Vital Signs. So that means that we decide to Act first and our first action is to Study the patient.

<Bob>OK – what happens next?

<Leslie>Then we will do whatever is needed to stabilise the patient based on what we have observed – it is called resuscitation – and only then we can plan how we will establish the diagnosis; the root cause of the crisis.

<Bob> So what does that spell?

<Leslie> A-S-D-P.  It is the exact opposite of P-D-S-A … the mirror image!

<Bob>Yes. Now consider the treatment that addresses the root cause and that cures the patient. What happens then?

<Leslie>We use the diagnosis is used to create a treatment Plan for the specific patient; we then Do that, and we Study the effect of the treatment in that specific patient, using our various charts to compare what actually happens with what we predicted would happen. Then we decide what to do next: the final action.  We may stop because we have achieved our goal, or repeat the whole cycle to achieve further improvement. So that is our old friend P-D-S-A.

<Bob>Yes. And what links the two bits together … what is the bit in the middle?

<Leslie>Once we have a diagnosis we look up the appropriate treatment options that have been proven to work through research trials and experience; and we tailor the treatment to the specific patient. Oh I see! The missing link is design. We design a specific treatment plan using generic principles.

<Bob>Yup.  The design step is the jam in the improvement sandwich and it acts like a mirror: A-S-D-P is reflected back as P-D-S-A

<Leslie>So I need to teach this backwards: P-D-S-A and then Design and then A-S-P-D!

<Bob>Yup – and you know that by another name.

<Leslie> 6M Design®! That is what my Improvement Science Practitioner course is all about.

<Bob> Yup.

<Leslie> If you had told me that at the start it would not have made much sense – it would just have confused me.

<Bob>I know. That is the reason I did not. The Mirror needs to be discovered in order for the true value to appreciated. At the start we look in the mirror and perceive what we want to see. We have to learn to see what is actually there. Us. Now you can see clearly where P-D-S-A and Design fit together and the missing A-S-D-P component that is needed to assemble a 6M Design® engine. That is Improvement-by-Design in a nine-letter nutshell.

<Leslie> Wow! I can’t wait to share this.

<Bob> And what do you expect the response to be?

<Leslie>”Yes, but”?

<Bob> From the die hard skeptics – yes. It is the ones who do not say “Yes, but” that you want to engage with. The ones who are quiet. It is always the quiet ones that hold the key.

The Black Curtain

Black_Curtain_and_DoorA couple of weeks ago an important event happened.  A Masterclass in Demand and Capacity for NHS service managers was run by an internationally renown and very experienced practitioner of Improvement Science.

The purpose was to assist the service managers to develop their capability for designing quality, flow and cost improvement using tried and tested operations management (OM) theory, techniques and tools.

It was assumed that as experienced NHS service managers that they already knew the basic principles of  OM and the foundation concepts, terminology, techniques and tools.

It was advertised as a Masterclass and designed accordingly.

On the day it was discovered that none of the twenty delegates had heard of two fundamental OM concepts: Little’s Law and Takt Time.

These relate to how processes are designed-to-flow. It was a Demand and Capacity Master Class; not a safety, quality or cost one.  The focus was flow.

And it became clear that none of the twenty delegates were aware before the day that there is a well-known and robust science to designing systems to flow.

So learning this fact came as a bit of a shock.

The implications of this observation are profound and worrying:

if a significant % of senior NHS operational managers are unaware of the foundations of operations management then the NHS may have problem it was not aware of …

because …

“if transformational change of the NHS into a stable system that is fit-for-purpose (now and into the future) requires the ability to design processes and systems that deliver both high effectiveness and high efficiency ...”

then …

it raises the question of whether the current generation of NHS managers are fit-for-this-future-purpose“.

No wonder that discovering a Science of  Improvement actually exists came as a bit of a shock!

And saying “Yes, but clinicians do not know this science either!” is a defensive reaction and not a constructive response. They may not but they do not call themselves “operational managers”.

[PS. If you are reading this and are employed by the NHS and do not know what Little’s Law and Takt Time are then it would be worth doing that first. Wikipedia is a good place to start].

And now we have another question:

“Given there are thousands of operational managers in the NHS; what does one sample of 20 managers tell us about the whole population?”

Now that is a good question.

It is also a question of statistics. More specifically quite advanced statistics.

And most people who work in the NHS have not studied statistics to that level. So now we have another do-not-know-how problem.

But it is still an important question that we need to understand the answer to – so we need to learn how and that means taking this learning path one step at a time using what we do know, rather than what we do not.

Step 1:

What do we know? We have one sample of 20 NHS service managers. We know something about our sample because our unintended experiment has measured it: that none of them had heard of Little’s Law or Takt Time. That is 0/20 or 0%.

This is called a “sample statistic“.

What we want to know is “What does this information tell us about the proportion of the whole population of all NHS managers who do have this foundation OM knowledge?”

This proportion of interest is called  the unknown “population parameter“.

And we need to estimate this population parameter from our sample statistic because it is impractical to measure a population parameter directly: That would require every NHS manager completing an independent and accurate assessment of their basic OM knowledge. Which seems unlikely to happen.

The good news is that we can get an estimate of a population parameter from measurements made from small samples of that population. That is one purpose of statistics.

Step 2:

But we need to check some assumptions before we attempt this statistical estimation trick.

Q1: How representative is our small sample of the whole population?

If we chose the delegates for the masterclass by putting the names of all NHS managers in a hat and drawing twenty names out at random, as in a  tombola or lottery, than we have what is called a “random sample” and we can trust our estimate of the wanted population parameter.  This is called “random sampling”.

That was not the case here. Our sample was self-selecting. We were not conducting a research study. This was the real world … so there is a chance of “bias”. Our sample may not be representative and we cannot say what the most likely bias is.

It is possible that the managers who selected themselves were the ones struggling most and therefore more likely than average to have a gap in their foundation OM knowledge. It is also possible that the managers who selected themselves are the most capable in their generation and are very well aware that there is something else that they need to know.

We may have a biased sample and we need to proceed with some caution.

Step 3:

So given the fact that none of our possibly biased sample of mangers were aware of the Foundation OM Knowledge then it is possible that no NHS service managers know this core knowledge.  In other words the actual population parameter is 0%. It is also possible that the managers in our sample were the only ones in the NHS who do not know this.  So, in theory, the sought-for population parameter could be anywhere between 0% and very nearly 100%.  Does that mean it is impossible to estimate the true value?

It is not impossible. In fact we can get an estimate that we can be very confident is accurate. Here is how it is done.

Statistical estimates of population parameters are always presented as ranges with a lower and an upper limit called a “confidence interval” because the sample is not the population. And even if we have an unbiased random sample we can never be 100% confident of our estimate.  The only way to be 100% confident is to measure the whole population. And that is not practical.

So, we know the theoretical limits from consideration of the extreme cases … but what happens when we are more real-world-reasonable and say – “let us assume our sample is actually a representative sample, albeit not a randomly selected one“.  How does that affect the range of our estimate of the elusive number – the proportion of NHS service managers who know basic operation management theory?

Step 4:

To answer that we need to consider two further questions:

Q2. What is the effect of the size of the sample?  What if only 5 managers had come and none of them knew; what if had been 50 or 500 and none of them knew?

Q3. What if we repeated the experiment more times? With the same or different sample sizes? What could we learn from that?

Our intuition tells us that the larger the sample size and the more often we do the experiment then the more confident we will be of the result. In other words  narrower the range of the confidence interval around our sample statistic.

Our intuition is correct because if our sample was 100% of the population we could be 100% confident.

So given we have not yet found an NHS service manager who has the OM Knowledge then we cannot exclude 0%. Our challenge narrows to finding a reasonable estimate of the upper limit of our confidence interval.

Step 5

Before we move on let us review where we have got to already and our purpose for starting this conversation: We want enough NHS service managers who are knowledgeable enough of design-for-flow methods to catalyse a transition to a fit-for-purpose and self-sustaining NHS.

One path to this purpose is to have a large enough pool of service managers who do understand this Science well enough to act as advocates and to spread both the know-of and the know-how.  This is called the “tipping point“.

There is strong evidence that when about 20% of a population knows about something that is useful for the whole population – then that knowledge  will start to spread through the grapevine. Deeper understanding will follow. Wiser decisions will emerge. More effective actions will be taken. The system will start to self-transform.

And in the Brave New World of social media this message may spread further and faster than in the past. This is good.

So if the NHS needs 20% of its operational managers aware of the Foundations of Operations Management then what value is our morsel of data from one sample of 20 managers who, by chance, were all unaware of the Knowledge.  How can we use that data to say how close to the magic 20% tipping point we are?

Step 6:

To do that we need to ask the question in a slightly different way.

Q4. What is the chance of an NHS manager NOT knowing?

We assume that they either know or do not know; so if 20% know then 80% do not.

This is just like saying: if the chance of rolling a “six” is 1-in-6 then the chance of rolling a “not-a-six” is 5-in-6.

Next we ask:

Q5. What is the likelihood that we, just by chance, selected a group of managers where none of them know – and there are 20 in the group?

This is rather like asking: what is the likelihood of rolling twenty “not-a-sixes” in a row?

Our intuition says “an unlikely thing to happen!”

And again our intuition is sort of correct. How unlikely though? Our intuition is a bit vague on that.

If the actual proportion of NHS managers who have the OM Knowledge is about the same chance of rolling a six (about 16%) then we sense that the likelihood of getting a random sample of 20 where not one knows is small. But how small? Exactly?

We sense that 20% is too a high an estimate of a reasonable upper limit.  But how much too high?

The answer to these questions is not intuitively obvious.

We need to work it out logically and rationally. And to work this out we need to ask:

Q6. As the % of Managers-who-Know is reduced from 20% towards 0% – what is the effect on the chance of randomly selecting 20 all of whom are not in the Know?  We need to be able to see a picture of that relationship in our minds.

The good news is that we can work that out with a bit of O-level maths. And all NHS service managers, nurses and doctors have done O-level maths. It is a mandatory requirement.

The chance of rolling a “not-a-six” is 5/6 on one throw – about 83%;
and the chance of rolling only “not-a-sixes” in two throws is 5/6 x 5/6 = 25/36 – about 69%
and the chance of rolling only “not-a-sixes” in three throws is 5/6 x 5/6 x 5/6 – about 58%… and so on.

[This is called the “chain rule” and it requires that the throws are independent of each other – i.e. a random, unbiased sample]

If we do this 20 times we find that the chance of rolling no sixes at all in 20 throws is about 2.6% – unlikely but far from impossible.

We need to introduce a bit of O-level algebra now.

Let us call the proportion of NHS service managers who understand basic OM, our unknown population parameter something like “p”.

So if p is the chance of a “six” then (1-p) is a chance of a “not-a-six”.

Then the chance of no sixes in one throw is (1-p)

and no sixes after 2 throws is (1-p)(1-p) = (1-p)^2 (where ^ means raise to the power)

and no sixes after three throws is (1-p)(1-p)(1-p) = (1-p)^3 and so on.

So the likelihood of  “no sixes in n throws” is (1-p)^n

Let us call this “t”

So the equation we need to solve to estimate the upper limit of our estimate of “p” is

t=(1-p)^20

Where “t” is a measure of how likely we are to choose 20 managers all of whom do not know – just by chance.  And we want that to be a small number. We want to feel confident that our estimate is reasonable and not just a quirk of chance.

So what threshold do we set for “t” that we feel is “reasonable”? 1 in a million? 1 in 1000? 1 in 100? 1 in10?

By convention we use 1 in 20 (t=0.05) – but that is arbitrary. If we are more risk-averse we might choose 1:100 or 1:1000. It depends on the context.

Let us be reasonable – let is say we want to be 95% confident our our estimated upper limit for “p” – which means we are calculating the 95% confidence interval. This means that will accept a 1:20 risk of our calculated confidence interval for “p” being wrong:  a 19:1 odds that the true value of “p” falls outside our calculated range. Pretty good odds! We will be reasonable and we will set the likelihood threshold for being “wrong” at 5%.

So now we need to solve:

0.05= (1-p)^20

And we want a picture of this relationship in our minds so let us draw a graph of t for a range of values of p.

We know the value of p must be between 0 and 1.0 so we have all we need and we can generate this graph easily using Excel.  And every senior NHS operational manager knows how to use Excel. It is a requirement. Isn’t it?

Black_Curtain

The Excel-generated chart shows the relationship between p (horizontal axis) and t (vertical axis) using our equation:

t=(1-p)^20.

Step 7

Let us first do a “sanity check” on what we have drawn. Let us “check the extreme values”.

If 0% of managers know then a sample of 20 will always reveal none – i.e. the leftmost point of the chart. Check!

If 100% of managers know then a sample of 20 will never reveal none – i.e. way off to the right. Check!

What is clear from the chart is that the relationship between p and t  is not a straight line; it is non-linear. That explains why we find it difficult to estimate intuitively. Our brains are not very good at doing non-linear analysis. Not very good at all.

So we need a tool to help us. Our Excel graph.  We read down the vertical “t” axis from 100% to the 5% point, then trace across to the right until we hit the line we have drawn, then read down to the corresponding value for “p”. It says about 14%.

So that is the upper limit of our 95% confidence interval of the estimate of the true proportion of NHS service managers who know the Foundations of Operations Management.  The lower limit is 0%.

And we cannot say better than somewhere between  0%-14% with the data we have and the assumptions we have made.

To get a more precise estimate,  a narrower 95% confidence interval, we need to gather some more data.

[Another way we can use our chart is to ask “If the actual % of Managers who know is x% the what is the chance that no one of our sample of 20 will know?” Solving this manually means marking the x% point on the horizontal axis then tracing a line vertically up until it crosses the drawn line then tracing a horizontal line to the left until it crosses the vertical axis and reading off the likelihood.]

So if in reality 5% of all managers do Know then the chance of no one knowing in an unbiased sample of 20 is about 35% – really quite likely.

Now we are getting a feel for the likely reality. Much more useful than just dry numbers!

But we are 95% sure that 86% of NHS managers do NOT know the basic language  of flow-improvement-science.

And what this chart also tells us is that we can be VERY confident that the true value of p is less than 2o% – the proportion we believe we need to get to transformation tipping point.

Now we need to repeat the experiment experiment and draw a new graph to get a more accurate estimate of just how much less – but stepping back from the statistical nuances – the message is already clear that we do have a Black Curtain problem.

A Black Curtain of Ignorance problem.

Many will now proclaim angrily “This cannot be true! It is just statistical smoke and mirrors. Surely our managers do know this by a different name – how could they not! It is unthinkable to suggest the majority of NHS manages are ignorant of the basic science of what they are employed to do!

If that were the case though then we would already have an NHS that is fit-for-purpose. That is not what reality is telling us.

And it quickly become apparent at the master class that our sample of 20 did not know-this-by-a-different-name.

The good news is that this knowledge gap could hiding the opportunity we are all looking for – a door to a path that leads to a radical yet achievable transformation of the NHS into a system that is fit-for-purpose. Now and into the future.

A system that delivers safe, high quality care for those who need it, in full, when they need it and at a cost the country can afford. Now and for the foreseeable future.

And the really good news is that this IS knowledge gap may be  and extensive deep but it is not wide … the Foundations are is easy to learn, and to start applying immediately.  The basics can be learned in less than a week – the more advanced skills take a bit longer.  And this is not untested academic theory – it is proven pragmatic real-world problem solving know-how. It has been known for over 50 years outside healthcare.

Our goal is not acquisition of theoretical knowledge – is is a deep enough understanding to make wise enough  decisions to achieve good enough outcomes. For everyone. Starting tomorrow.

And that is the design purpose of FISH. To provide those who want to learn a quick and easy way to do so.

Stop Press: Further feedback from the masterclass is that some of the managers are grasping the nettle, drawing back their own black curtains, opening the door that was always there behind it, and taking a peek through into a magical garden of opportunity. One that was always there but was hidden from view.

Improvement-by-Twitter

Sat 5th October

It started with a tweet.

08:17 [JG] The NHS is its people. If you lose them, you lose the NHS.

09:15 [DO] We are in a PEOPLE business – educating people and creating value.

Sun 6th October

08:32 [SD] Who isn’t in people business? It is only people who buy stuff. Plants, animals, rocks and machines don’t.

09:42 [DO] Very true – it is people who use a service and people who deliver a service and we ALL know what good service is.

09:47 [SD] So onus is on us to walk our own talk. If we don’t all improve our small bits of the NHS then who can do it for us?

Then we were off … the debate was on …

10:04 [DO] True – I can prove I am saving over £160 000.00 a year – roll on PBR !?

10:15 [SD] Bravo David. I recently changed my surgery process: productivity up by 35%. Cost? Zero. How? Process design methods.

11:54 [DO] Exactly – cost neutral because we were thinking differently – so how to persuade the rest?

12:10 [SD] First demonstrate it is possible then show those who want to learn how to do it themselves. http://www.saasoft.com/fish/course

We had hard evidence it was possible … and now MC joined the debate …

12:48 [MC] Simon why are there different FISH courses for safety, quality and efficiency? Shouldn’t good design do all of that?

12:52 [SD] Yes – goal of good design is all three. It just depends where you are starting from: Governance, Operations or Finance.

A number of parallel threads then took off and we all had lots of fun exploring  each others knowledge and understanding.

17:28 MC registers on the FISH course.

And that gave me an idea. I emailed an offer – that he could have a complimentary pass for the whole FISH course in return for sharing what he learns as he learns it.  He thought it over for a couple of days then said “OK”.

Weds 9th October

06:38 [MC] Over the last 4 years of so, I’ve been involved in incrementally improving systems in hospitals. Today I’m going to start an experiment.

06:40 [MC] I’m going to see if we can do less of the incremental change and more system redesign. To do this I’ve enrolled in FISH

Fri 11th October

06:47 [MC] So as part of my exploration into system design, I’ve done some studies in my clinic this week. Will share data shortly.

21:21 [MC] Here’s a chart showing cycle time of patients in my clinic. Median cycle time 14 mins, but much longer in 2 pic.twitter.com/wu5MsAKk80

20131019_TTchart

21:22 [MC] Here’s the same clinic from patients’ point if view, wait time. Much longer than I thought or would like

20131019_WTchart

21:24 [MC] Two patients needed to discuss surgery or significant news, that takes time and can’t be rushed.

21:25 [MC] So, although I started on time, worked hard and finished on time. People were waited ages to see me. Template is wrong!

21:27 [MC] By the time I had seen the the 3rd patient, people were waiting 45 mins to see me. That’s poor.

21:28 [MC] The wait got progressively worse until the end of the clinic.

Sunday 13th October

16:02 [MC] As part of my homework on systems, I’ve put my clinic study data into a Gantt chart. Red = waiting, green = seeing me pic.twitter.com/iep2PDoruN

20131019_Ganttchart

16:34 [SD] Hurrah! The visual power of the Gantt Chart. Worth adding the booked time too – there are Seven Sins of Scheduling to find.

16:36 [SD] Excellent – good idea to sort into booked time order – it makes the planned rate of demand easier to see.

16:42 [SD] Best chart is Work In Progress – count the number of patients at each time step and plot as a run chart.

17:23 [SD] Yes – just count how many lines you cross vertically at each time interval. It can be automated in Excel

17:38 [MC] Like this? pic.twitter.com/fTnTK7MdOp

 

20131019_WIPchart

This is the work-in-progress chart. The most useful process monitoring chart of all. It shows the changing size of the queue over time.  Good flow design is associated with small, steady queues.

18:22 [SD] Perfect! You’re right not to plot as XmR – this is a cusum metric. Not a healthy WIP chart this!

There was more to follow but the “ah ha” moment had been seen and shared.

Weds 16th October

MC completes the Online FISH course and receives his well-earned Certificate of Achievement.

This was his with-the-benefit-of-hindsight conclusion:

I wish I had known some of this before. I will have totally different approach to improvement projects now. Key is to measure and model well before doing anything radical.

Improvement Science works.
Improvement-by-Design is a skill that can be learned quickly.
FISH is just a first step.

The Power of the Converted Skeptic

puzzle_lightbulb_build_PA_150_wht_4587One of the biggest challenges in Improvement Science is diffusion of an improvement outside the circle of control of the innovator.

It is difficult enough to make a significant improvement in one small area – it is an order of magnitude more difficult to spread the word and to influence others to adopt the new idea!

One strategy is to shame others into change by demonstrating that their attitude and behaviour are blocking the diffusion of innovation.

This strategy does not work.  It generates more resistance and amplifies the differences of opinion.

Another approach is to bully others into change by discounting their opinion and just rolling out the “obvious solution” by top-down diktat.

This strategy does not work either.  It generates resentment – even if the solution is fit-for-purpose – which it usually is not!

So what does work?

The key to it is to convert some skeptics because a converted skeptic is a powerful force for change.

But doesn’t that fly in the face of established change management theory?

Innovation diffuses from innovators to early-adopters, then to the silent majority, then to the laggards and maybe even dinosaurs … doesn’t it?

Yes – but that style of diffusion is incremental, slow and has a very high failure rate.  What is very often required is something more radical, much faster and more reliable.  For that it needs both push from the Confident Optimists and pull from some Converted Pessimists.  The tipping point does not happen until the silent majority start to come off the fence in droves: and they do that when the noisy optimists and equally noisy pessimists start to agree.

The fence-sitters jump when the tug-o-war stalemate stops and the force for change becomes aligned in the direction of progress.

So how is a skeptic converted?

Simple. By another Converted Skeptic.


Here is a real example.

We are all skeptical about many things that we would actually like to improve.

Personal health for instance. Something like weight. Yawn! Not that Old Chestnut!

We are bombarded with shroud-waver stories that we are facing an epidemic of obesity, rapidly rising  rates of diabetes, and all the nasty and life-shortening consequences of that. We are exhorted to eat “five portions of fruit and veg a day” …  or else! We are told that we must all exercise our flab away. We are warned of the Evils of Cholesterol and told that overweight children are caused by bad parenting.

The more gullible and fearful are herded en-masse in the direction of the Get-Thin-Quick sharks who then have a veritable feeding frenzy. Their goal is their short-term financial health not the long-term health of their customers.

The more insightful, skeptical and frustrated seek solace in the chocolate Hob Nob jar.

For their part, the healthcare professionals are rewarded for providing ineffective healthcare by being paid-for-activity not for outcome. They dutifully measure the decline and hand out ineffective advice. Their goal is survival too.

The outcome is predictable and seemingly unavoidable.


So when a disruptive innovation comes along that challenges the current dogma and status quo, the healthy skeptics inevitably line up and proclaim that it will not work.

Not that it does not work. They do not know that because they never try it. They are skeptics. Someone else has to prove it to them.

And I am a healthy skeptic about many things.

I am skeptical about diets – the evidence suggests that their proclaimed benefit is difficult to achieve and even more difficult to sustain: and that is the hall-mark of either a poor design or a deliberate, profit-driven, yet legal scam.

So I decided to put an innovative approach to weight loss to the test.  It is not a diet – it is a design to achieve and sustain a healthier weight to height ratio.  And for it to work it must work for me because I am a diet skeptic.

The start of the story is  HERE

I am now a Converted Healthier Skeptic.

I call the innovative design a “2 out of 7 Lo-CHO” policy and what that means is for two days a week I just cut out as much carbohydrate (CHO) as feasible.  Stuff like bread, potatoes, rice, pasta and sugar. The rest of the time I do what I normally do.  There is no need for me to exercise and no need for me to fill up on Five Fruit and Veg.

LoCHO_Design

The chart above is the evidence of what happened. It shows a 7 kg reduction in weight over 140 days – and that is impressive given that it has required no extra exercise and no need to give up tasty treats completely and definitely no need to boost the bottom-line of a Get-Thin-Quick shark!

It also shows what to expect.  The weight loss starts steeper then tails off as it approaches a new equilibrium weight. This is the classic picture of what happens to a “system” when one of its “operational policies” is wisely re-designed.

Patience, persistence and a time-series chart are all that is needed. It takes less than a minute per day to monitor the improvement.

Even I can afford to invest a minute per day.

The BaseLine© chart clearly shows that the day-to-day variation is quite high: and that is expected – it is inherent in the 2-out-of-7 Lo-CHO design. It is the not the short-term change that is the measure of success – it is the long-term improvement that is important.

It is important to measure daily – because it is the daily habit that keeps me mindful, aligned, and  on-goal.  It is not the measurement itself that is the most important thing – it is the conscious act of measuring and then plotting the dot in the context of the previous dots. The picture tells the story. No further “statistical” analysis is required.

The power of this chart is that it provides hard evidence that is very effective for nudging other skeptics like me into giving the innovative idea a try.  I know because I have done that many times now.  I have converted other skeptics.  It is an innovation infection.

And the same principle appears to apply to other areas.  What is critical to success is tangible and visible proof of progress. That is what skeptics need. Then a rational and logical method and explanation that respects their individual opinion and requirements. The design has to work for them. And it must make sense.

They will come out with a string of “Yes … buts” and that is OK because that is how skeptics work.  Just answer their questions with evidence and explanations. It can get a bit wearing I admit but it is worth the effort.

An effective Improvement Scientist needs to be a healthy skeptic too – i.e. an open minded one.

DRAT!

[Bing Bong]  The sound bite heralded Leslie joining the regular Improvement Science mentoring session with Bob.  They were now using web-technology to run virtual meetings because it allows a richer conversation and saves a lot of time. It is a big improvement.

<Bob> Hi Lesley, how are you today?

<Leslie> OK thank you Bob.  I have a thorny issue to ask you about today. It has been niggling me even since we started to share the experience we are gaining from our current improvement-by-design project.

<Bob> OK. That sounds interesting. Can you paint the picture for me?

<Leslie> Better than that – I can show you the picture, I will share my screen with you.

DRAT_01 <Bob> OK. I can see that RAG table. Can you give me a bit more context?

<Leslie> Yes. This is how our performance management team have been asked to produce their 4-weekly reports for the monthly performance committee meetings.

<Bob> OK. I assume the “Period” means sequential four week periods … so what is Count, Fail and Fail%?

<Leslie> Count is the number of discharges in that 4 week period, Fail is the number whose length of stay is longer than the target, and Fail% is the ratio of Fail/Count for each 4 week period.

<Bob> It looks odd that the counts are all 28.  Is there some form of admission slot carve-out policy?

<Leslie> Yes. There is one admission slot per day for this particular stream – that has been worked out from the average historical activity.

<Bob> Ah! And the Red, Amber, Green indicates what?

<Leslie> That is depends where the Fail% falls in a set of predefined target ranges; less than 5% is green, 5-10% is Amber and more than 10% is red.

<Bob> OK. So what is the niggle?

<Leslie>Each month when we are in the green we get no feedback – a deafening silence. Each month we are in amber we get a warning email.  Each month we are in the red we have to “go and explain ourselves” and provide a “back-on-track” plan.

<Bob> Let me guess – this feedback design is not helping much.

<Leslie> It is worse than that – it creates a perpetual sense of fear. The risk of breaching the target is distorting people’s priorities and their behaviour.

<Bob> Do you have any evidence of that?

<Leslie> Yes – but it is anecdotal.  There is a daily operational meeting and the highest priority topic is “Which patients are closest to the target length of stay and therefore need to have their  discharge expedited?“.

<Bob> Ah yes.  The “target tail wagging the quality dog” problem. So what is your question?

<Leslie> How do we focus on the cause of the problem rather than the symptoms?  We want to be rid of the “fear of the stick”.

<Bob> OK. What you have hear is a very common system design flaw. It is called a DRAT.

<Leslie> DRAT?

<Bob> “Delusional Ratio and Arbitrary Target”.

<Leslie> Ha! That sounds spot on!  “DRAT” is what we say every time we miss the target!

<Bob> Indeed.  So first plot this yield data as a time series chart.

<Leslie> Here we go.

DRAT_02<Bob>Good. I see you have added the cut-off thresholds for the RAG chart. These 5% and 10% thresholds are arbitrary and the data shows your current system is unable to meet them. Your design looks incapable.

<Leslie>Yes – and it also shows that the % expressed to one decimal place is meaningless because there are limited possibilities for the value.

<Bob> Yes. These are two reasons that this is a Delusional Ratio; there are quite a few more.

DRAT_03<Leslie> OK  and if I plot this as an Individuals charts I can see that this variation is not exceptional.

<Bob> Careful Leslie. It can be dangerous to do this: an Individuals chart of aggregate yield becomes quite insensitive with aggregated counts of relatively rare events, a small number of levels that go down to zero, and a limited number of points.  The SPC zealots are compounding the problem and plotting this data as a C-chart or a P-chart makes no difference.

This is all the effect of the common practice of applying  an arbitrary performance target then counting the failures and using that as means of control.

It is poor feedback loop design – but a depressingly common one.

<Leslie> So what do we do? What is a better design?

<Bob> First ask what the purpose of the feedback is?

<Leslie> To reduce the number of beds and save money by forcing down the length of stay so that the bed-day load is reduced and so we can do the same activity with fewer beds and at the same time avoid cancellations.

<Bob> OK. That sounds reasonable from the perspective of a tax-payer and a patient. It would also be a more productive design.

<Leslie> I agree but it seems to be having the opposite effect.  We are focusing on avoiding breaches so much that other patients get delayed who could have gone home sooner and we end up with more patients to expedite. It is like a vicious circle.  And every time we fail we get whacked with the RAG stick again. It is very demoralizing and it generates a lot of resentment and conflict. That is not good for anyone – least of all the patients.

<Bob>Yes.  That is the usual effect of a DRAT design. Remember that senior managers have not been trained in process improvement-by-design either so blaming them is also counter-productive.  We need to go back to the raw data. Can you plot actual LOS by patient in order of discharge as a run chart.

DRAT_04

<Bob> OK – is the maximum LOS target 8 days?

<Leslie> Yes – and this shows  we are meeting it most of the time.  But it is only with a huge amount of effort.

<Bob> Do you know where 8 days came from?

<Leslie> I think it was the historical average divided by 85% – someone read in a book somewhere that 85%  average occupancy was optimum and put 2 and 2 together.

<Bob> Oh dear! The “85% Occupancy is Best” myth combined with the “Flaw of Averages” trap. Never mind – let me explain the reasons why it is invalid to do this.

<Leslie> Yes please!

<Bob> First plot the data as a run chart and  as a histogram – do not plot the natural process limits yet as you have done. We need to do some validity checks first.

DRAT_05

<Leslie> Here you go.

<Bob> What do you see?

<Leslie> The histogram  has more than one peak – and there is a big one sitting just under the target.

<Bob>Yes. This is called the “Horned Gaussian” and is the characteristic pattern of an arbitrary lead-time target that is distorting the behaviour of the system.  Just as you have described subjectively. There is a smaller peak with a mode of 4 days and are a few very long length of stay outliers.  This multi-modal pattern means that the mean and standard deviation of this data are meaningless numbers as are any numbers derived from them. It is like having a bag of mixed fruit and then setting a maximum allowable size for an unspecified piece of fruit. Meaningless.

<Leslie> And the cases causing the breaches are completely different and could never realistically achieve that target! So we are effectively being randomly beaten with a stick. That is certainly how it feels.

<Bob> They are certainly different but you cannot yet assume that their longer LOS is inevitable. This chart just says – “go and have a look at these specific cases for a possible cause for the difference“.

<Leslie> OK … so if they are from a different system and I exclude them from the analysis what happens?

<Bob> It will not change reality.  The current design of  this process may not be capable of delivering an 8 day upper limit for the LOS.  Imposing  a DRAT does not help – it actually makes the design worse! As you can see. Only removing the DRAT will remove the distortion and reveal the underlying process behaviour.

<Leslie> So what do we do? There is no way that will happen in the current chaos!

<Bob> Apply the 6M Design® method. Map, Measure and Model it. Understand how it is behaving as it is then design out all the causes of longer LOS and that way deliver with a shorter and less variable LOS. Your chart shows that your process is stable.  That means you have enough flow capacity – so look at the policies. Draw on all your FISH training. That way you achieve your common purpose, and the big nasty stick goes away, and everyone feels better. And in the process you will demonstrate that there is a better feedback design than DRATs and RAGs. A win-win-win design.

<Leslie> OK. That makes complete sense. Thanks Bob!  But what you have described is not part of the FISH course.

<Bob> You are right. It is part of the ISP training that comes after FISH. Improvement Science Practitioner.

<Leslie> I think we will need to get a few more people trained in the theory, techniques and tools of Improvement Science.

<Bob> That would appear to be the case. They will need a real example to see what is possible.

<Leslie> OK. I am on the case!

Fudge? We Love Fudge!

stick_figures_moving_net_150_wht_8609
It is almost autumn again.  The new school year brings anticipation and excitement. The evenings are drawing in and there is a refreshing chill in the early morning air.

This is the time of year for fudge.

Alas not the yummy sweet sort that Grandma cooked up and gave out as treats.

In healthcare we are already preparing the Winter Fudge – the annual guessing game of attempting to survive the Winter Pressures. By fudging the issues.

This year with three landmark Safety and Quality reports under our belts we have more at stake than ever … yet we seem as ill prepared as usual. Mr Francis, Prof Keogh and Dr Berwick have collectively exhorted us to pull up our socks.

So let us explore how and why we resort to fudging the issues.

Watch the animation of a highly simplified emergency department and follow the thoughts of the manager. You can pause, rewind, and replay as much as you like.  Follow the apparently flawless logic – it is very compelling. The exercise is deliberately simplified to eliminate wriggle room. But it is valid because the behaviour is defined by the Laws of Physics – and they are not negotiable.

http://www.youtube.com/watch?v=geRBGP-u5zg&rel=0&loop=1&modestbranding=1

The problem was combination of several planning flaws – two in particular.

First is the “Flaw of Averages” which is where the past performance-over-time is boiled down to one number. An average. And that is then used to predict precise future behaviour. This is a very big mistake.

The second is the “Flaw of Fudge Factors” which is a attempt to mitigate the effects of first error by fudging the answer – by adding an arbitrary “safety margin”.

This pseudo-scientific sleight-of-hand may polish the planning rhetoric and render it more plausible to an unsuspecting Board – but it does not fool Reality.

In reality the flawed design failed – as the animation dramatically demonstrated.  The simulated patients came to harm. Unintended harm to be sure – but harm nevertheless.

So what is the alternative?

The alternative is to learn how to avoid Sir Flaw of Averages and his slippery friend Mr Fudge Factor.

And learning how to do that is possible … it is called Improvement Science.

And you can start right now … click HERE.

Step 5 – Monitor

Improvement-by-Design is not the same as Improvement-by-Desire.

Improvement-by-Design has a clear destination and a design that we know can get us there because we have tested it before we implement it.

Improvement-by-Desire has a vague direction and no design – we do not know if the path we choose will take us in the direction we desire to go. We cannot see the twists and turns, the unknown decisions, the forks, the loops, and the dead-ends. We expect to discover those along the way. It is an exercise in hope.

So where pessimists and skeptics dominate the debate then Improvement-by-Design is a safer strategy.

Just over seven weeks ago I started an Improvement-by-Design project – a personal one. The destination was clear: to get my BMI (body mass index) into a “healthy” range by reducing weight by about 5 kg.  The design was clear too – to reduce energy input rather than increase energy output. It is a tried-and-tested method – “avoid burning the toast”.  The physical and physiological model predicted that the goal was achievable in 6 to 8 weeks.

So what has happened?

To answer that question requires two time-series charts. The input chart of calories ingested and the output chart of weight. This is Step 5 of the 6M Design® sequence.

Energy_Weight_ModelRemember that there was another parameter  in this personal Energy-Weight system: the daily energy expended.

But that is very difficult to measure accurately – so I could not do that.

What I could do was to estimate the actual energy expended from the model of the system using the measured effect of the change. But that is straying into the Department of Improvement Science Nerds. Let us stay in the real world a  bit longer.

Here is the energy input chart …

SRD_EnergyIn_XmR

It shows an average calorie intake of 1500 kcal – the estimated required value to achieve the weight loss given the assumptions of the physiological model. It also shows a wide day-to-day variation.  It does not show any signal flags (red dots) so an inexperienced Improvementologist might conclude that this just random noise.

It is not.  The data is not homogeneous. There is a signal in the system – a deliberate design change – and without that context it is impossible to correctly interpret the chart.

Remember Rule #1: Data without context is meaningless.

The deliberate process design change was to reduce calorie intake for just two days per week by omitting unnecessary Hi-Cal treats – like those nice-but-naughty Chocolate Hobnobs. But which two days varied – so there is no obvious repeating pattern in the chart. And the intake on all days varied – there were a few meals out and some BBQ action.

To separate out these two parts of the voice-of-the-process we need to rationally group the data into the Lo-cal days (F) and the OK-cal days (N).

SRD_EnergyIn_Grouped_XmR

The grouped BaseLine© chart tells a different story.  The two groups clearly have a different average and both have a lower variation-over-time than the meaningless mixed-up chart.

And we can now see a flag – on the second F day. That is a prompt for an “investigation” which revealed: will-power failure.  Thursday evening beer and peanuts! The counter measure was to avoid Lo-cal on a Thursday!

What we are seeing here is the fifth step of 6M Design® exercise  – the Monitor step.

And as well as monitoring the factor we are changing – the cause;  we also monitor the factor we want to influence – the effect.

The effect here is weight. And our design includes a way of monitoring that – the daily weighing.

SRD_WeightOut_XmRThe output metric BaseLine© chart – weight – shows a very different pattern. It is described as “unstable” because there are clusters of flags (red dots) – some at the start and some at the end. The direction of the instability is “falling” – which is the intended outcome.

So we have robust, statistically valid evidence that our modified design is working.

The weight is falling so the energy going in must be less than the energy being put out. I am burning off the excess lard and without doing any extra exercise.  The physics of the system mandate that this is the only explanation. And that was my design specification.

So that is good. Our design is working – but is it working as we designed?  Does observation match prediction? This is Improvement-by-Design.

Remember that we had to estimate the other parameter to our model – the average daily energy output – and we guessed a value of 2400 kcal per day using generic published data.  Now I can refine the model using my specific measured change in weight – and I can work backwards to calculate the third parameter.  And when I did that the number came out at 2300 kcal per day.  Not a huge difference – the equivalent of one yummy Chocolate Hobnob a day – but the effect is cumulative.  Over the 53 days of the 6M Design® project so far that would be a 5300 kcal difference – about 0.6kg of useless blubber.

So now I have refined my personal energy-weight model using the new data and I can update my prediction and create a new chart – a Deviation from Aim chart.

SRD_WeightOut_DFA
This is the  chart I need to watch to see  if I am on the predicted track – and it too is unstable -and not a good direction.  It shows that the deviation-from-aim is increasing over time and this is because my original guesstimate of an unmeasurable model parameter was too high.

This means that my current design will not get me to where I want to be, when I what to be there. This tells me  I need to tweak my design.  And I have a list of options.

1) I could adjust the target average calories per day down from 1500 to 1400 and cut out a few more calories; or

2) I could just keep doing what I am doing and accept that it will take me longer to get to the destination; or

3) I could do a bit of extra exercise to burn the extra 100 kcals a day off, or

4) I could do a bit of any or all three.

And because I am comparing experience with expectation using a DFA chart I will know very quickly if the design tweak is delivering.

And because some nice weather has finally arrived so the BBQ will be busy I have chosen to take longer to get there. I will enjoy the weather, have a few beers and some burgers. And that is OK. It is a perfectly reasonable design option – it is a rational and justifiable choice.

And I need to set my next destination – a weight if about 72 kg according to the BMI chart – and with my calibrated Energy-Weight model I will know exactly how to achieve that weight and how long it will take me. And I also know how to maintain it – by  increasing my calorie intake. More beer and peanuts – maybe – or the occasional Chocolate Hobnob even. Hurrah! Win-win-win!


6MDesign This real-life example illustrates 6M Design® in action and demonstrates that it is a generic framework.

The energy-weight model in this case is a very simple one that can be worked out on the back of a beer mat (which is what I did).

It is called a linear model because the relationship between calories-in and weight-out is approximately a straight line.

Most real-world systems are not like this. Inputs are not linearly related to outputs.  They are called non-linear systems: and that makes a BIG difference.

A very common error is to impose a “linear model” on a “non-linear system” and it is a recipe for disappointment and disaster.  We do that when we commit the Flaw of Averages error. We do it when we plot linear regression lines through time-series data. We do it when we extrapolate beyond the limits of our evidence.  We do it when we equate time with money.

The danger of this error is that our linear model leads us to make unwise decisions and we actually make the problem worse – not better.  We then give up in frustration and label the problem as “impossible” or “wicked” or get sucked into to various forms of Snake Oil Sorcery.

The safer approach is to assume the system is non-linear and just let the voice of the system talk to us through our BaseLine© charts. The challenge for us is to learn to understand what the system is saying.

That is why the time-series charts are called System Behaviour Charts and that is why they are an essential component of Improvement-by-Design.

However – there is a step that must happen before this – and that is to get the Foundations in place. The foundation of knowledge on which we can build our new learning. That gap must be filled first.

And anyone who wants to invest in learning the foundations of improvement science can now do so at their own convenience and at their own pace because it is on-line …. and it is here.

fish

Step 6 – Maintain

Anyone with much experience of  change will testify that one of the hardest parts is sustaining the hard won improvement.

The typical story is all too familiar – a big push for improvement, a dramatic improvement, congratulations and presentations then six months later it is back where it was before but worse. The cynics are feeding on the corpse of the dead change effort.

The cause of this recurrent nightmare is a simple error of omission.

Failure to complete the change sequence. Missing out the last and most important step. Step 6 – Maintain.

Regular readers may remember the story of the pharmacy project – where a sceptical department were surprised and delighted to discover that zero-cost improvement was achievable and that a win-win-win outcome was not an impossible dream.

Enough time has now passed to ask the question: “Was the improvement sustained?”

TTO_Yield_Nov12_Jun13The BaseLine© chart above shows their daily performance data on their 2-hour turnaround target for to-take-out prescriptions (TTOs) . The weekends are excluded because the weekend system is different from the weekday system. The first split in the data in Jan 2013 is when the improvement-by-design change was made. Step 4 on the 6M Design® sequence – Modify.

There was an immediate and dramatic improvement in performance that was sustained for about six weeks – then it started to drift back. Bit by Bit.  The time-series chart flags it clearly.


So what happened next?

The 12-week review happened next – and it was done by the change leader – in this case the Inspector/Designer/Educator.  The review data plotted as a time-series chart revealed instability and that justified an investigation of the root cause – which was that the final and critical step had not been completed as recommended. The inner feedback loop was missing. Step 6 – Maintain was not in place.

The outer feedback loop had not been omitted. That was the responsibility of the experienced change leader.

And the effect of closing the outer-loop is clearly shown by the third segment – a restoration of stability and improved capability. The system is again delivering the improvement it was designed to deliver.


What does this lesson teach us?

The message here is that the sponsors of improvement have essential parts to play in the initiation and the maintenance of change and improvement. If they fail in their responsibility then the outcome is inevitable and predictable. Mediocrity and cynicism.

Part 1: Setting the clarity and constancy of common purpose.

Without a clear purpose then alignment, focus and effectiveness are thwarted.  Purpose that changes frequently is not a purpose – it is reactive knee-jerk politics.  Constancy of purpose is required because improvement takes time to achieve and to embed.  There is always a lag so moving the target while the arrow is in flight is both dangerous and leads to disengagement.  Establishing common ground is essential to avoiding the time-wasting discussion and negotiation that is inevitable when opinions differ – which they always do.

Part 2: Respectful challenge.

Effective change leadership requires an ability to challenge from a position of mutual respect.  Telling people what to do is not leadership – it is dictatorship.  Dodging the difficult conversations and passing the buck to others is not leadership – it is ineffective delegation. Asking people what they want to do is not leadership – it is abdication of responsibility.  People need their leaders to challenge them and to respect them at the same time.  It is not a contradiction.  It is possible to do both.

And one way that a leader of change can challenge with respect is to expose the need for change; to create the context for change; and then to commit to holding those charged with change to account – including themselves.  And to make it clear at the start what their expectation is as a leader – and what the consequences of disappointment are.

It is a delight to see individuals,  teams, departments and organisations blossom and grow when the context of change is conducive.  And it is disappointing to see them wither and shrink when the context of change is laced with cynicide – the toxic product of cynicism.


So what is the next step?

What could an aspirant change leader do to get this for themselves and their organisations?

One option is to become a Student of Improvementology® – and they can do that here.

Spreading the Word

clock_hands_spinning_import_150_wht_3149Patience is a virtue for an advocate of Improvementology®.

This week Mike Davidge (Head of Measurement for the former NHS Institute for Innovation and Improvement) posted some feedback on the Journal of Improvement Science site.

His feedback is reproduced here in full with Mike’s permission. The rationale for reproduction that the activity data shows that more people the Blog than the Journal.

Feedback posted on 15/06/2013 at 07:35:05 for paper entitled:

Dodds S. A Case Study of a Successful One-Stop Clinic Schedule Design using Formal Methods . Journal of Improvement Science 2012:6; 1-13.

“It’s only taken me a year to get round to reading this, an improvement on your 9 years to write it! It was well worth the read. You should make a serious attempt to publish this where it gets a wider audience. Rank = 5/5”

thank_you_boing_150_wht_5547Mike is a world expert in healthcare system measurement and improvement so this is a huge compliment. Thank you Mike. He is right too – 1 year is a big improvement on 9 years. So why did it take 9 years to write up?

One reason is that publication was not the purpose. Improvement was the purpose. Another reason was that this was a step in a bigger improvement project – one that is described in Three Wins.  There is a third reason: the design flaws of the traditional academic peer review process. This is radical stuff and upsets a lot of people so we need to be careful.

The two primary design flaws of conventional peer-reviewed academic journals are:

1) that it has a long lead time and
2) that it has a low yield.

So it is very expensive in author-lifetime.  Improvement is not the same as research.  Perfection is not the goal. Author lifetime is a very valuable resource. If it is wasted with an inefficient publication process design then the result is less output and less dissemination of valuable Improvement Science.

So if any visitors would like to benefit from Mike’s recommendation then you can download the full text of the essay here. It has not been peer-reviewed so you will have to make you own minds up about the value. And if you have any questions then you are free to ask the author.

PS. The visitor who points out the most spelling and grammar errors will earn themselves a copy of BaseLine© the time-series analysis software used to create the charts.

Closing the Two Loops

Over the past few weeks I have been conducting an Improvement Science Experiment (ISE).  I do that a lot.  This one is a health improvement experiment. I do that a lot too.  Specifically – improving my own health. Ah! Not so diligent with that one.

The domain of health that I am focusing on is weight – for several reasons:
(1) because a stable weight that is within “healthy” limits is a good idea for many reasons and
(2) because weight is very easy to measure objectively and accurately.

But like most people I have constraints: motivation constraints, time constraints and money constraints.  What I need is a weight reduction design that requires no motivation, no time, and no money.  That sounds like a tough design challenge – so some consideration is needed.

Design starts with a specific purpose and a way of monitoring progress.  And I have a purpose – weight within acceptable limits; a method for monitoring progress – a dusty set of digital scales. What I need is a design for delivering the improvement and a method for maintaining it. That is the challenge.

So I need a tested design that will deliver the purpose.  I could invent something here but it is usually quicker to learn from others who have done it, or something very similar.  And there is lots of knowledge and experience out there.  And they fall into two broad schools – Eat Healthier or Exercise More and usually Both.

Eat Healthier is sold as  Eat Less of the Yummy Bad Stuff and more of the Yukky Good Stuff. It sounds like a Puritanical Policy and is not very motivating. So with zero motivation as  a constraint this is a problem.  And Yukky Good Stuff seems to come with a high price tag. So with zero budget as a constraint this is a problem too.

Exercise More is sold as Get off Your Bottom and Go for a Walk. It sounds like a Macho Man Mantra. Not very motivating either. It takes time to build up a “healthy” sweat and I have no desire to expose myself as a health-desperado by jogging around my locality in my moth-eaten track suit.  So with zero time as a constraint this is a problem. Gym subscriptions and the necessary hi-tech designer garb do not come cheap.  So with a zero budget constraint this is another problem.

So far all the conventional wisdom is failing to meet any of my design constraints. On all dimensions.

Oh dear!

The rhetoric is not working.  That packet of Chocolate Hob Nobs is calling to me from the cupboard. And I know I will feel better if I put them out of their misery. Just one will not do any harm. Yum Yum.  Arrrgh!!!  The Guilt. The Guilt.

OK – get a grip – time for Improvement Scientist to step in – we need some Science.

[Improvement Science hat on]

The physics and physiology are easy on this one:

(a) What we eat provides us with energy to do necessary stuff (keep warm, move about, think, etc). Food energy  is measured in “Cals”; work energy is measured in “Ergs”.
(b) If we eat more Cals than we burn as Ergs then the difference is stored for later – ultimately as blubber (=fat).
(c) There are four contributors to or weight: dry (bones and stuff), lean (muscles and glands of various sorts), fluid (blood, wee etc), and blubber (fat).
(d) The sum of the dry, lean, and fluids should be constant – we need them – we do not store energy there.
(e) The fat component varies. It is stored energy. Work-in-progress so to speak.
(f) One kilogram of blubber is equivalent to about 9000 Cals.
(g) An adult of average weight, composition, and activity uses between 2000 and 2500 Cals per day – just to stay at a stable weight.

These facts are all we need to build an energy flow model.

Food Cals = Energy In.
Work Ergs = Energy Out.
Difference between Energy In and Energy Out is converted to-and-from blubber at a rate of 1 gram per 9 Cal.
Some of our weight is the accumulated blubber – the accumulated difference between Cals-In and Ergs-Out

The Laws Of Physics are 100% Absolute and 0% Negotiable. The Behaviours of People are 100% Relative and 100% Negotiable.  Weight loss is more about behaviour. Habits. Lifestyle.

Bit more Science needed now:

Which foods have the Cals?

(1) Fat (9 Cal per gram)
(2) Carbs (4 Cal per gram)
(3) Protein (4 Cal per gram)
(4) Water, Vitamins, Minerals, Fibre, Air, Sunshine, Fags, Motivation (0 Cal per gram).

So how much of each do we get from the stuff we nosh?

It is easy enough to work out – but it is very tedious to do so.  This is how calorie counting weight loss diets work. You weigh everything that goes in, look up the Cal conversions per gram in a big book, do some maths and come up with a number.  That takes lots of time. Then you convert to points and engage in a pseudo-accounting game where you save points up and cash them in as an occasional cream cake.  Time is a constraint and Saving-the-Yummies-for-Later is not changing a habit – it is feeding it!

So it is just easier for me to know what a big bowel of tortilla chips translates to as Cals. Then I can make an informed choice. But I do not know that.

Why not?

Because I never invested time in learning.  Like everyone else I gossip, I guess, and I generalise.  I say “Yummy stuff is bad because it is Hi-Cal; Yukky stuff is good because it is Lo-Cal“.  And from this generalisation I conclude “Cutting Cals feels bad“. Which is a problem because my motivation is already rock bottom.  So I do nothing,  and my weight stays the same, and I still feel bad.

The Get-Thin-Quick industry knows this … so they use Shock Tactics to motivate us.  They scare us with stories of fat young people having heart attacks and dying wracked with regret. Those they leave behind are the real victims. The industry bludgeons us into fearful submission and into coughing up cash for their Get Thin Quick Panaceas.  Their real goal is the repeat work – the loyal customers. And using scare mongering and a few whale-to-waif conversions as rabble-rousing  zealots they cook up the ideal design to achieve that.  They know that, for most of us, as soon as the fear subsides, the will weakens, the chips are down (the neck), the blubber builds, and we are back with our heads hung low and our wallets open.

I have no motivation – that is a constraint.  So flogging an over-weight and under-motivated middle-aged curmudgeon will only get a more over-weight, ego-bruised-and-depressed, middle-aged cynic. I may even seek solace in the Chocolate Hob Nob jar.

Nah! I need a better design.

[Improvement Scientist hat back on]

First Rule of Improvement – Check the Assumptions.

Assumption 1:
Yummy => Hi-Cal => Bad for Health
Yukky => Lo-Cal => Good for Health

It turns out this is a gross over-simplification.  Lots of Yummy things are Lo-Cal; lots of Yukky things are Hi-Cal. Yummy and Yukky are subjective. Cals are not.

OK – that knowledge is really useful because if I know which-is-which then I can made wiser decisions. I can do swaps so that the Yummy Score goes higher and the Cals Score goes lower.  That sounds more like it! My Motiv-o-Meter twitches.

Assumption 2:
Hi-Cal => Cheap => Good for Wealth
Lo-Cal => Expensive => Bad for Wealth

This is a gross over-simplification too. Lots of Expensive things are Hi-Cal; lots of Cheap things are Lo-Cal.

OK so what about the combination?

Bingo!  There are lots of Yummy+Cheap+Lo-Cal things out there !  So my process is to swap the Lose-Lose-Lose for the Win-Win-Win. I feel a motivation surge. The needle on my Motiv-o-Meter definitely moved this time.

But how much? And for how long? And how will I know if it is working?

[Improvement Science hat back on]

Second Rule of Improvement Science – Work from the Purpose

We need an output  specification.  What weight reduction in what time-scale?

OK – I work out my target weight – using something called the BMI (body mass index) which uses my height and a recommended healthy BMI range to give a target weight range. I plumb for 75 kg – not just “10% reduction” – I need an absolute goal. (PS. The BMI chart I used is at the end of the blog).

OK – I now I need a time-scale – and I know that motivation theory shows that if significant improvement is not seen within 15 repetitions of a behaviour change then it does not stick. It will not become a new habit. I need immediate feedback. I need to see a significant weight reduction within two weeks. I need a quick win to avoid eroding my fragile motivation.  And so long as a get that I will keep going. And how long to get to target weight?  One or two lunar cycles feels about right. Let us compromise on six weeks.

And what is a “significant improvement”?

Ah ha! Now I am on familiar ground – I have a tool for answering that question – a system behaviour chart (SBC).  I need to measure my weight and plot it on a time-series chart using BaseLine.  And I know that I need 9 points to show a significant shift, and I know I must not introduce variation into my measurements. So I do four things – I ensure my scales have high enough precision (+/- 0.1 kg); I do the weighing under standard conditions (same time of day and same state of dress);  I weigh myself every day or every other day; and I plot-the-dots.

OK – how am I doing on my design checklist?
1. Purpose – check
2. Process – check
3. Progress – check

Anything missing?

Yes – I need to measure the energy input – the Cals per day going in – but I need a easy, quick and low-cost way of doing it.

Time for some brainstorming. What about an App? That fancy new smartphone can earn its living for a change. Yup – lots of free ones for tracking Cals.  Choose one. Works OK. Another flick on the Motiv-o-Meter needle.

OK – next bit of the jigsaw. What is my internal process metric (IPM)?  How many fewer Cals per day on average do I need to achieve … quick bit of beer-mat maths … that many kg reduction times Cal per kg of blubber divided by 6 weeks gives  … 1300 Cals per day less than now (on average).  So what is my daily Cals input now?  I dunno. I do not have a baseline.  And I do not fancy measuring it for a couple of weeks to get one. My feeble motivation will not last that long. I need action. I need a quick win.

OK – I need to approach this a different way.  What if I just change the input to more Yummy+Cheap+Lo-Cal stuff and less Yummy+Cheap+Hi-Cal stuff and just measure what happens.  What if I just do what I feel able to? I can measure the input Cals accurately enough and also the output weight. My curiosity is now pricked too and my Inner Nerd starts to take notice and chips in “You can work out the rest from that. It is a simple S&F model” . Thanks Inner Nerd – you do come in handy occasionally. My Motiv-o-Meter is now in the green – enough emotional fuel for a decision and some action.

I have all the bits of the design jigsaw – Purpose, Process, Progress and Pieces.  Studying, and Planning over – time for Doing.

So what happened?

It is an ongoing experiment – but so far it has gone exactly as the design dictated (and the nerdy S&F model predicted).

And the experience has helped me move some Get-Thin-Quick mantras to the rubbish bin.

I have counted nine so far:

Mantra 1. Do not weight yourself every day –  rubbish – weigh yourself every day using a consistent method and plot the dots.
Mantra 2. Focus on the fatrubbish – it is Cals that count whatever the source – fat, carbs, protein (and alcohol).
Mantra 3. Five fresh fruit and veg a dayrubbish – they are just Hi-Cost+Low-Cal stocking fillers.
Mantra 4. Only eat balanced mealsrubbish –  it is OK to increase protein and reduce both carbs and fat.
Mantra 5. It costs money to get healthyrubbish – it is possible to reduce cost by switching to Yummy+Cheap+Lo-Cal stuff.
Mantra 6. Cholesterol is badrubbish – we make more cholesterol than we eat – just stay inside a recommended range.
Mantra 7. Give up all alcohol – rubbish – just be sensible – just stay inside a recommended range.
Mantra 8. Burn the fat with exercise rubbish – this is scraping-the-burnt-toast thinking – less Cals in first.
Mantra 9. Eat less every dayrubbish – it is OK to have Lo-Cal days and OK-Cal days – it is the average Cals that count.

And the thing that has made the biggest difference is the App.  Just being able to quickly look up the Cals in a “Waitrose Potato Croquette” when-ever and where-ever I want to is what I really needed. I have quickly learned what-is-in-what and that helps me make “Do I need that Chocolate Hob-Nob or not?” decisions on the fly. One tiny, insignificant Chocolate Hob-Nob = 95 Cals. Ouch! Maybe not.

I have been surprised by what I have learned. I now know that before I was making lots of unwise decisions based on completely wrong assumptions. Doh!

The other thing that has helped me build motivation is seeing the effect of those wiser design decisions translated into a tangible improvement – and quickly!  With a low-variation and high-precision weight measurement protocol I can actually see the effect of the Cals ingested yesterday on the Weight recorded today.  Our bodies obey the Laws of Physics. We are what we eat.

So what is the lesson to take away?

That there are two feedback loops that need to be included in all Improvement Science challenges – and both loops need to be closed so information flows if the Improvement exercise is to succeed and to sustain.

First the Rhetoric Feedback loop – where new, specific, knowledge replaces old, generic gossip. We want to expose the myths and mantras and reveal novel options.  Challenge assumptions with scientifically valid evidence. If you do not know then look it up.

Second the Reality Feedback loop – where measured outcomes verifies the wisdom of the decision – the intended purpose was achieved.  Measure the input, internal and output metrics and plot all as time-series charts. Seeing is believing.

So the design challenge has been achieved and with no motivation, no time and no budget.

Now where is that packet of Chocolate Hob Nobs. I think I have earned one. Yum yum.

[PS. This is not a new idea – it is called “double loop learning“.  Do not know of it? Worth looking it up?]


bmi_chart

Invisible Design

Improvement Science is all about making some-thing better in some-way by some-means.

There are lots of things that might be improved – almost everything in fact.

There are lots of ways that those things might be improved. If it was a process we might improve safety, quality, delivery, and productivity. If it was a product we might improve reliability, usability, durability and affordability.

There are lots of means by which those desirable improvements might be achieved – lots of different designs.

Multiply that lot together and you get a very big number of options – so it is no wonder we get stuck in the “what to do first?” decision process.

So how do we approach this problem currently?

We use our intuition.

Intuition steers us to the obvious – hence the phrase intuitively obvious. Which means what looks to our minds-eye to be a good option.And that is OK. It is usually a lot better than guessing (but not always).

However, the problem using “intuitively obvious” is that we end up with mediocrity. We get “about average”. We get “OKish”.  We get “satisfactory”. We get “what we expected”. We get “same as always”. We do not get “significantly better-than-average’. We do not get “reliably good”. We do not get improvement. And we do not because anyone and everyone can do the “intuitively obvious” stuff.

To improve we need a better-than-average functional design. We need a Reliably Good Design. And that is invisible.

By “invisible” I mean not immediately obvious to our conscious awareness.  We do not notice good functional design because it does not get in the way of achieving our intention.  It does not trip us up.

We notice poor functional design because it trips us up. It traps us into making mistakes. It wastes out time. It fails to meet our expectation. And we are left feeling disappointed, irritated, and anxious. We feel Niggled.

We also notice exceptional design – because it works far better than we expected. We are surprised and we are delighted.

We do not notice Good Design because it just works. But there is a trap here. And that is we habitually link expectation to price.  We get what we paid for.  Higher cost => Better design => Higher expectation.

So we take good enough design for granted. And when we take stuff for granted we are on the slippery slope to losing it. As soon as something becomes invisible it is at risk of being discounted and deleted.

If we combine these two aspects of “invisible design” we arrive at an interesting conclusion.

To get from Poor Design to OK Design and then Good Design we have to think “counter-intuitively”.  We have to think “outside the box”. We have to “think laterally”.

And that is not a natural way for us to think. Not for individuals and not for teams. To get improvement we need to learn a method of how to counter our habit of thinking intuitively and we need to practice the method so that we can do it when we need to. When we want to need to improve.

To illustrate what I mean let us consider an real example.

Suppose we have 26 cards laid out in a row on a table; each card has a number on it; and our task is to sort the cards into ascending order. The constraint is that we can only move cards by swapping them.  How do we go about doing it?

There are many sorting designs that could achieve the intended purpose – so how do we choose one?

One criteria might be the time it takes to achieve the result. The quicker the better.

One criteria might be the difficulty of the method we use to achieve the result. The easier the better.

When individuals are given this task they usually do something like “scan the cards for the smallest and swap it with the first from the left, then repeat for the second from the left, and so on until we have sorted all the cards“.

This card-sorting-design is fit for purpose.  It is intuitively obvious, it is easy to explain, it is easy to teach and it is easy to do. But is it the quickest?

The answer is NO. Not by a long chalk.  For 26 randomly mixed up cards it will take about 3 minutes if we scan at a rate of 2 per second. If we have 52 cards it will take us about 12 minutes. Four times as long. Using this intuitively obvious design the time taken grows with the square of the number of cards that need sorting.

In reality there are much quicker designs and for this type of task one of the quickest is called Quicksort. It is not intuitively obvious though, it is not easy to describe, but it is easy to do – we just follow the Quicksort Policy.  (For those who are curious you can read about the method here and make up your own mind about how “intuitively obvious” it is.  Quicksort was not invented until 1960 so given that sorting stuff is not a new requirement, it clearly was not obvious for a few thousand years).

Using Quicksort to sort our 52 cards would take less than 3 minutes! That is a 400% improvement in productivity when we flip from an intuitive to a counter-intuitive design.  And Quicksort was not chance discovery – it was deliberately designed to address a specific sorting problem – and it was designed using robust design principles.

So our natural intuition tends to lead us to solutions that are “effective, easy and inefficient” – and that means expensive in terms of use of resources.

This has an important conclusion – if we are all is given the same improvement assignment and we all used our intuition to solve it then we will get similar and mediocre results.  It will feel OK and it will appear obvious but there will be no improvement.

We then conclude that “OK, this is the best we can expect.” which is intuitively obvious, logically invalid, and wrong. It is that sort of intuitive thinking trap that blocked us from inventing Quicksort for thousands of years.

And remember, to decide what is “best” we have to explore all options exhaustively – both intuitively obvious and counter-intuitively obscure. That impossible in practice.  This is why “best” and “optimum” are generally unhelpful concepts in the context of improvement science.

So how do we improve when good design is so counter-intuitive?

The answer is that we learn a set of “good designs” from a teacher who knows and understands them, and then we prove them to ourselves in practice. We leverage the “obvious in retrospect” effect. And we practice until we understand. And then we then teach others.

So if we wanted to improve the productivity of our designed-by-intuition card sorting process we could:
(a) consult a known list of proven sorting algorithms,
(b) choose one that meets our purpose (our design specification),
(c) compare the measured performance of our current “intuitively obvious” design with the predicted performance of that “counter-intuitively obscure” design,
(d) set about planning how to implement the higher performance design – possibly as a pilot first to confirm the prediction, reassure the fence-sitters, satisfy the skeptics, and silence the cynics.

So if these proven good designs are counter-intuitive then how do we get them?

The simplest and quickest way is to learn from people who already know and understand them. If we adopt the “not invented by us” attitude and attempt to re-invent the wheel then we may get lucky and re-discover a well-known design, we might even discover a novel design; but we are much more likely to waste a lot of time and end up no better off, or worse. This is called “meddling” and is driven by a combination of ignorance and arrogance.

So who are these people who know and understand good design?

They are called Improvement Scientists – and they have learned one-way-or-another what a good design looks like. That lalso means they can see poor design where others see only-possible design.

That difference of perception creates a lot of tension.

The challenge that Improvement Scientists face is explaining how counter-intuitive good design works: especially to highly intelligent, skeptical people who habitually think intuitively. They are called Academics.  And it is a pointless exercise trying to convince them using rhetoric.

Instead our Improvement Scientists side-steps the “theoretical discussion” and the “cynical discounting” by pragmatically demonstrating the measured effect of good design in practice. They use reality to make the case for good design – not rhetoric.

Improvement Scientists are Pragmatists.

And because they have learned how counter-intuitive good design is to the novice – how invisible it is to their intuition – then they are also Voracious Learners. They have enough humility to see themselves as Eternal Novices and enough confidence to be selective students.  They will actively seek learning from those who can demonstrate the “what” and explain the “how”.  They know and understand it is a much quicker and easier way to improve their knowledge and understanding.  It is Good Design.

 

Do Not Give Up Too Soon

clock_hands_spinning_import_150_wht_3149Tangible improvement takes time. Sometimes it takes a long time.

The more fundamental the improvement the more people are affected. The more people involved the greater the psychological inertia. The greater the resistance the longer it takes to show tangible effects.

The advantage of deep-level improvement is that the cumulative benefit is greater – the risk is that the impatient Improvementologist may give up too early – sometimes just before the benefit becomes obvious to all.

The seeds of change need time to germinate and to grow – and not all good ideas will germinate. The green shoots of innovation do not emerge immediately – there is often a long lag and little tangible evidence for a long time.

This inevitable  delay is a source of frustration, and the impatient innovator can unwittingly undo their good work.  By pushing too hard they can drag a failure from the jaws of success.

Q: So how do we avoid this trap?

The trick is to understand the effect of the change on the system.  This means knowing where it falls on our Influence Map that is marked with the Circles of Control, Influence and Concern.

Our Circle of Concern includes all those things that we are aware of that present a threat to our future survival – such as a chunk of high-velocity space rock smashing into the Earth and wiping us all out in a matter of milliseconds. Gulp! Very unlikely but not impossible.

Some concerns are less dramatic – such as global warming – and collectively we may have more influence over changing that. But not individually.

Our Circle of Influence lies between the limit of our individual control and the limit of our collective control. This a broad scope because “collective” can mean two, twenty, two hundred, two thousand, two million, two billion and so on.

Making significant improvements is usually a Circle of Influence challenge and only collectively can we make a difference.  But to deliver improvement at this level we have to influence others to change their knowledge, understanding, attitudes, beliefs and behaviour. That is not easy and that is not quick. It is possible though – with passion, plausibility, persistence, patience – and an effective process.

It is here that we can become impatient and frustrated and are at risk of giving up too soon – and our temperaments influence the risk. Idealists are impatient for fundamental change. Rationals, Guardians and Artisans do not feel the same pain – and it is a rich source of conflict.

So if we need to see tangible results quickly then we have to focus closer to home. We have to work inside our Circle of Individual Influence and inside our Circle of Control.  The scope of individual influence varies from person-to-person but our Circle of Control is the same for all of us: the outer limit is our skin.  We all choose our behaviour and it is that which influences others: for better or for worse.  It is not what we think it is what we do. We cannot read or control each others minds. We can all choose our attitudes and our actions.

So if we want to see tangible improvement quickly then we must limit the scope of our action to our Circle of Individual Influence and get started.  We do what we can and as soon as we can.

Choosing what to do and what not do requires wisdom. That takes time to develop too.


Making an impact outside the limit of our Circle of Individual Influence is more difficult because it requires influencing many other people.

So it is especially rewarding for to see examples of how individual passion, persistence and patience have led to profound collective improvement.  It proves that it is still possible. It provides inspiration and encouragement for others.

One example is the recently published Health Foundation Quality, Cost and Flow Report.

This was a three-year experiment to test if the theory, techniques and tools of Improvement Science work in healthcare: specifically in two large UK acute hospitals – Sheffield and Warwick.

The results showed that Improvement Science does indeed work in healthcare and it worked for tough problems that were believed to be very difficult if not impossible to solve. That is very good news for everyone – patients and practitioners.

But the results have taken some time to appear in published form – so it is really good news to report that the green shoots of improvement are now there for all to see.

The case studies provide hard evidence that win-win-win outcomes are possible and achievable in the NHS.

The Impossibility Hypothesis has been disproved. The cynics can step off the bus. The skeptics have their evidence and can now become adopters.

And the report offers a lot of detail on how to do it including two references that are available here:

  1. A Recipe for Improvement PIE
  2. A Study of Productivity Improvement Tactics using a Two-Stream Production System Model

These references both describe the fundamentals of how to align financial improvement with quality and delivery improvement to achieve the elusive win-win-win outcome.

A previously invisible door has opened to reveal a new Land of Opportunity. A land inhabited by Improvementologists who mark the path to learning and applying this new knowledge and understanding.

There are many who do not know what to do to solve the current crisis in healthcare – they now have a new vista to explore.

Do not give up too soon –  there is a light at the end of the dark tunnel.

And to get there safely and quickly we just need to learn and apply the Foundations of Improvement Science in Healthcare – and we first learn to FISH in our own ponds first.

fish

What is the Temperamenture?

tweet_birdie_flying_between_phones_150_wht_9168Tweet
The sound heralded the arrival of a tweet so Bob looked up from his book and scanned the message. It was from Leslie, one of the Improvement Science apprentices.

It said “If your organisation is feeling poorly then do not forget to measure the Temperamenture. You may have Cultural Change Fever.

Bob was intrigued. This was a novel word and he suspected it was not a spelling error. He know he was being teased. He tapped a reply on his iPad “Interesting word ‘Temperamenture’ – can you expand?” 

Ring Ring
<Bob> Hello, Bob here.

There was laughing on the other end of the line – it was Leslie.

<Leslie> Ho Ho. Hi Bob – I thought that might prick your curiosity if you were on line. I know you like novel words.

<Bob> Ah! You know my weakness – I am at your mercy now!  So, I am consumed with curiosity – as you knew I would be.

<Leslie> OK. No more games. You know that you are always saying that there are three parts to Improvement Science – Processes, People and Systems – and that the three are synergistic so they need to be kept in balance …

<Bob> Yes.

<Leslie> Well, I have discovered a source of antagonism that creates a lot of cultural imbalance and emotional heat in my organisation.

<Bob> OK. So I take from that you mean an imbalance in the People part that then upsets the Process and System parts.

<Leslie> Yes, exactly. In your Improvement Science course you mentioned the theory behind this but did not share any real examples.

<Bob> That is very possible.  Hard evidence and explainable examples are easier for the Process component – the People stuff is more difficult to do that way.  Can you be more specific?  I think I know where you may be going with this.

<Leslie> OK. Where do you feel I am going with it?

<Bob> Ha! The student becomes the teacher. Excellent response! I was thinking something to do with the Four Temperaments.

<Leslie>Yes.  And specifically the conflict that can happen between them.  I am thinking of the tension between the Idealists and the Guardians.

<Bob> Ah!  Yes. The Bile Wars – Yellow and Black. The Cholerics versus the Melancholics. So do you have hard evidence of this happening in reality rather than just my theoretical rhetoric?

<Leslie> Yes!  But the facts do not seem to fit the theory. You know that I work in a hospital. Well one of the most important “engines” of a hospital is the surgical operating suite. Conveniently called the SOS.

<Bob> Yes. It seems to be a frequent source of both Nuggets and Niggles.

<Leslie> Well, I am working with the SOS team at my hospital and I have to say that they are a pretty sceptical bunch.  Everyone seems to have strong opinions.  Strong but different opinions of what should happen and who should do it.  The words someone and should get mentioned a lot.  I have not managed to find this elusive “someone” yet.  The some-one, no-one, every-one, any-one problem.

<Bob> OK. I have heard this before. I hear that surgeons in particular have strong opinions – and they disagree with each other!  I remember watching episodes of “Doctor in the House” many years ago.  What was the name of the irascible chief surgeon played by James Robertson Justice? Sir Lancelot Spratt the archetype consultant surgeon. Are they actually like that?

<Leslie> I have not met any as extreme as Sir Lancelot though some do seem to emulate that role model.  In reality the surgeons, anaesthetists, nurses, ODPs, and managers all seem to believe there is one way that a theatre should be run, their way, and their separate “one ways” do not line up.  Hence the conflict and high emotional temperature.

<Bob> OK, so how does the Temperament dimension relate to this?  Is there a temperament mismatch between the different tribes in the operating suite as the MBTI theory would suggest?

<Leslie> That was my hypothesis and I decided that the only way I could test it was by mapping the temperaments using the Temperament Sorter from the FISH toolbox.

<Bob> Excellent, but you would need quite a big sample to draw any statistically valid conclusions.  How did you achieve that with a group of disparate sceptics?

<Leslie>I know.  So I posed this challenge as a research question – and they were curious enough to give it a try.  Well, the Surgeons and Anaesthetists were anyway.  The Nurses, OPDs and Managers chose to sit on the fence and watch the game.

<Bob>Wow! Now I am really interested. What did you find?

<Leslie>Woah there!  I need to explain how we did it first.  They have a monthly audit meeting where they all get together as separate groups and after I posed the question they decided to do use the Temperament Sorter at one of those meetings.  It was done in a light-hearted way and it was really good fun too.  I brought some cartoons and descriptions of the sixteen MBTI types and they tried to guess who was which type.

<Bob>Excellent.  So what did you find?

<Leslie>We disproved the hypothesis that there was a Temperament mismatch.

<Bob>Really!  What did the data show?

<Leslie> It showed that the Temperament profile for both surgeons and anaesthetists was different from the population average …

<Bob>OK, and …?

<Leslie>… and that there was no statistical difference between surgeons and anaesthetists.

<Bob> Really! So what are they both?

<Leslie> Guardians. The majority of both tribes are SJs.

There was a long pause.  Bob was digesting this juicy new fact.  Leslie knew that if there was one thing that Bob really liked it was having a theory disproved by reality.  Eventually he replied.

<Bob> Clarity of hindsight is a wonderful thing.  It makes complete sense that they are Guardians.  Speaking as a patient, what I want most is Safety and Predictability which is the ideal context for Guardians to deliver their best.  I am sure that neither surgeons nor anaesthetists like “surprises” and I suspect that they both prefer doing things “by the book”.  They are sceptical of new ideas by temperament.

<Leslie> And there is more.

<Bob> Excellent! What?

<Leslie> They are tough-minded Guardians. They are STJs.

<Bob> Of course!  Having the responsibility of “your life in my hands” requires a degree of tough-mindedness and an ability to not get too emotionally hooked.  Sir Lancelot is a classic extrovert tough-minded Guardian!  The Rolls-Royce and the ritual humiliation of ignorant underlings all fits.  Wow!  Well done Leslie.  So what have you done with this new knowledge and deeper understanding?

<Leslie> Ouch! You got me! That is why I sent the Tweet. Now what do I do?

<Bob> Ah! I am not sure.  We are both sailing in uncharted water now so I suggest we explore and learn together.  Let me ponder and do some exploring of the implications of your findings and I will get back to you.  Can you do the same?

<Leslie> Good plan. Shall we share notes in a couple of days?

<Bob> Excellent. I look forward to it.


This is not a completely fictional narrative.

In a recent experiment the Temperament of a group of 66 surgeons and 65 anaesthetists was mapped using a standard Myers-Briggs Type Indicator® tool.  The data showed that the proportion reporting a Guardian (xSxJ) preference was 62% for the surgeons and 59% for the anaesthetists.  The difference was not statistically significant [For the statistically knowledgable the Chi-squared test gave a p-value of 0.84].  The reported proportion of the normal population who have a Guardian temperament is 34% so this is very different from the combined group of operating theatre doctors [Chi-squared test, p<0.0001].  Digging deeper into the data the proportion showing the tough-minded Guardian preference, the xSTJ, was 55% for the Surgeons and 46% for the Anaesthetists which was also not significantly different [p=0.34] but compared with a normal population proportion of 24% there are significantly more tough-minded Guardians in the operating theatre [p<0.0001].

So what then is the difference between Surgeons and Anaesthetists in their preferred modes of thinking?

The data shows that Surgeons are more likely to prefer Extraversion – the ESTJ profile – compared with Anaesthetists – who lean more towards Introversion – the ISTJ profile (p=0.12). This p-value means that with the data available there is a one in eight chance that this difference is due to chance. We would needs a bigger set of data to get greater certainty.

The temperament gradient is enough to create a certain degree of tension because although the Guardian temperament is the same, and the tough-mindedness is the same, the dominant function differs between the ESTJ and the ISTJ types.  As the Surgeons tend to the ESTJ mode, their dominant function is Thinking Judgement. The Anaesthetists tend to perfer ISTJ so their dominant fuction is Sensed Perceiving. This makes a big difference.

And it fits with their chosen roles in the operating theatre. The archetype ESTJ Surgeon is the Supervisor and decides what to do and who does it. The archetype ISTJ Anaesthetist is the Inspector and monitors and maintains safety and stability. This is a sweepig generalisation of course – but a useful one.

The roles are complementary, the minor conflict is inevitable, and the tension is not a “bad” thing – it is healthy – for the patient.  But when external forces threaten the safety, predictability and stability the conflict is amplified.

lightning_strike_150_wht_5809Rather like the weather.

Hot wet air looks clear. Cold dry air looks clear too.  When hot-humid air from the tropics meets cold-crisp air from the poles then a band of of fog will be created.  We call it a weather front and it generates variation.  And if the temperature and humidity difference is excessive then storm clouds will form. The lightning will flash and the thunder will growl as the energy is released.

Clouds obscure clarity of forward vision but clouds also create shade from the sun above; clouds trap warmth beneath; and clouds create rain which is necessary to sustain growth. Clouds are not all bad.  Some cloudiness is necessary.

An Improvement Scientist knows that 100% harmony is not the healthiest ratio. Unchallenged group-think is potentially dangerous.  Zero harmony is also unhealthy.  Open warfare is destructive.  Everyone loses.  A mixture of temperaments, a diversity of perspectives, a bit of fog, and a bit of respectful challenge is healthier than All-or-None.

It is at the complex and dynamic interface between different temperaments that learning and innovation happens so a slight temperamenture gradient is ideal.  The emotometer should not read too cold or too hot.

Understanding this dynamic is a big step towards being able to manage the creative tension.

To explore the Temperamenture Map of your team, department and organisation try the Temperament Sorter tool – one of the Improvement Science cultural diagnostic tests.

The Writing on the Wall – Part II

Who_Is_To_BlameThe retrospectoscope is the favourite instrument of the forensic cynic – the expert in the after-the-event-and-I-told-you-so rhetoric. The rabble-rouser for the lynch-mob.

It feels better to retrospectively nail-to-a-cross the person who committed the Cardinal Error of Omission, and leave them there in emotional and financial pain as a visible lesson to everyone else.

This form of public feedback has been used for centuries.

It is called barbarism, and it has no place in a modern civilised society.


A more constructive question to ask is:

Could the evolving Mid-Staffordshire crisis have been detected earlier … and avoided?”

And this question exposes a tricky problem: it is much more difficult to predict the future than to explain the past.  And if it could have been detected and avoided earlier, then how is that done?  And if the how-is-known then is everyone else in the NHS using this know-how to detect and avoid their own evolving Mid-Staffs crisis?

To illustrate how it is currently done let us use the actual Mid-Staffs data. It is conveniently available in Figure 1 embedded in Figure 5 on Page 360 in Appendix G of Volume 1 of the first Francis Report.  If you do not have it at your fingertips I have put a copy of it below.

MS_RawData

The message does not exactly leap off the page and smack us between the eyes does it? Even with the benefit of hindsight.  So what is the problem here?

The problem is one of ergonomics. Tables of numbers like this are very difficult for most people to interpret, so they create a risk that we ignore the data or that we just jump to the bottom line and miss the real message. And It is very easy to miss the message when we compare the results for the current period with the previous one – a very bad habit that is spread by accountants.

This was a slowly emerging crisis so we need a way of seeing it evolving and the better way to present this data is as a time-series chart.

As we are most interested in safety and outcomes, then we would reasonably look at the outcome we do not want – i.e. mortality.  I think we will all agree that it is an easy enough one to measure.

MS_RawDeathsThis is the raw mortality data from the table above, plotted as a time-series chart.  The green line is the average and the red-lines are a measure of variation-over-time. We can all see that the raw mortality is increasing and the red flags say that this is a statistically significant increase. Oh dear!

But hang on just a minute – using raw mortality data like this is invalid because we all know that the people are getting older, demand on our hospitals is rising, A&Es are busier, older people have more illnesses, and more of them will not survive their visit to our hospital. This rise in mortality may actually just be because we are doing more work.

Good point! Let us plot the activity data and see if there has been an increase.

MS_Activity

Yes – indeed the activity has increased significantly too.

Told you so! And it looks like the activity has gone up more than the mortality. Does that mean we are actually doing a better job at keeping people alive? That sounds like a more positive message for the Board and the Annual Report. But how do we present that message? What about as a ratio of mortality to activity? That will make it easier to compare ourselves with other hospitals.

Good idea! Here is the Raw Mortality Ratio chart.

MS_RawMortality_RatioAh ha. See! The % mortality is falling significantly over time. Told you so.

Careful. There is an unstated assumption here. The assumption that the case mix is staying the same over time. This pattern could also be the impact of us doing a greater proportion of lower complexity and lower risk work.  So we need to correct this raw mortality data for case mix complexity – and we can do that by using data from all NHS hospitals to give us a frame of reference. Dr Foster can help us with that because it is quite a complicated statistical modelling process. What comes out of Dr Fosters black magic box is the Global Hospital Raw Mortality (GHRM) which is the expected number of deaths for our case mix if we were an ‘average’ NHS hospital.

MS_ExpectedMortality_Ratio

What this says is that the NHS-wide raw mortality risk appears to be falling over time (which may be for a wide variety of reasons but that is outside the scope of this conversation). So what we now need to do is compare this global raw mortality risk with our local raw mortality risk  … to give the Hospital Standardised Mortality Ratio.

MS_HSMRThis gives us the Mid Staffordshire Hospital HSMR chart.  The blue line at 100 is the reference average – and what this chart says is that Mid Staffordshire hospital had a consistently higher risk than the average case-mix adjusted mortality risk for the whole NHS. And it says that it got even worse after 2001 and that it stayed consistently 20% higher after 2003.

Ah! Oh dear! That is not such a positive message for the Board and the Annual Report. But how did we miss this evolving safety catastrophe?  We had the Dr Foster data from 2001

This is not a new problem – a similar thing happened in Vienna between 1820 and 1850 with maternal deaths caused by Childbed Fever. The problem was detected by Dr Ignaz Semmelweis who also discovered a simple, pragmatic solution to the problem: hand washing.  He blew the whistle but unfortunately those in power did not like the implication that they had been the cause of thousands of avoidable mother and baby deaths.  Semmelweis was vilified and ignored, and he did not publish his data until 1861. And even then the story was buried in tables of numbers.  Semmelweis went mad trying to convince the World that there was a problem.  Here is the full story.

Also, time-series charts were not invented until 1924 – and it was not in healthcare – it was in manufacturing. These tried-and-tested safety and quality improvement tools are only slowly diffusing into healthcare because the barriers to innovation appear somewhat impervious.

And the pores have been clogged even more by the social poison called “cynicide” – the emotional and political toxin exuded by cynics.

So how could we detect a developing crisis earlier – in time to avoid a catastrophe?

The first step is to estimate the excess-death-equivalent. Dr Foster does this for you.MS_ExcessDeathsHere is the data from the table plotted as a time-series chart that shows that the estimated-excess-death-equivalent per year. It has an average of 100 (that is two per week) and the average should be close to zero. More worryingly the number was increasing steadily over time up to 200 per year in 2006 – that is about four excess deaths per week – on average.  It is important to remember that HSMR is a risk ratio and mortality is a multi-factorial outcome. So the excess-death-equivalent estimate does not imply that a clear causal chain will be evident in specific deaths. That is a complete misunderstanding of the method.

I am sorry – you are losing me with the statistical jargon here. Can you explain in plain English what you mean?

OK. Let us use an example.

Suppose we set up a tombola at the village fete and we sell 50 tickets with the expectation that the winner bags all the money. Each ticket holder has the same 1 in 50 risk of winning the wad-of-wonga and a 49 in 50 risk of losing their small stake. At the appointed time we spin the barrel to mix up the ticket stubs then we blindly draw one ticket out. At that instant the 50 people with an equal risk changes to one winner and 49 losers. It is as if the grey fog of risk instantly condenses into a precise, black-and-white, yes-or-no, winner-or-loser, reality.

Translating this concept back into HSMR and Mid Staffs – the estimated 1200 deaths are the just the “condensed risk of harm equivalent”.  So, to then conduct a retrospective case note analysis of specific deaths looking for the specific cause would be equivalent to trying to retrospectively work out the reason the particular winning ticket in the tombola was picked out. It is a search that is doomed to fail. To then conclude from this fruitless search that HSMR is invalid, is only to compound the delusion further.  The actual problem here is ignorance and misunderstanding of the basic Laws of Physics and Probability, because our brains are not good at solving these sort of problems.

But Mid Staffs is a particularly severe example and  it only shows up after years of data has accumulated. How would a hospital that was not as bad as this know they had a risk problem and know sooner? Waiting for years to accumulate enough data to prove there was a avoidable problem in the past is not much help. 

That is an excellent question. This type of time-series chart is not very sensitive to small changes when the data is noisy and sparse – such as when you plot the data on a month-by-month timescale and avoidable deaths are actually an uncommon outcome. Plotting the annual sum smooths out this variation and makes the trend easier to see, but it delays the diagnosis further. One way to increase the sensitivity is to plot the data as a cusum (cumulative sum) chart – which is conspicuous by its absence from the data table. It is the running total of the estimated excess deaths. Rather like the running total of swings in a game of golf.

MS_ExcessDeaths_CUSUMThis is the cusum chart of excess deaths and you will notice that it is not plotted with control limits. That is because it is invalid to use standard control limits for cumulative data.  The important feature of the cusum chart is the slope and the deviation from zero. What is usually done is an alert threshold is plotted on the cusum chart and if the measured cusum crosses this alert-line then the alarm bell should go off – and the search then focuses on the precursor events: the Near Misses, the Not Agains and the Niggles.

I see. You make it look easy when the data is presented as pictures. But aren’t we still missing the point? Isn’t this still after-the-avoidable-event analysis?

Yes! An avoidable death should be a Never-Event in a designed-to-be-safe healthcare system. It should never happen. There should be no coffins to count. To get to that stage we need to apply exactly the same approach to the Near-Misses, and then the Not-Agains, and eventually the Niggles.

You mean we have to use the SUI data and the IR1 data and the complaint data to do this – and also ask our staff and patients about their Niggles?

Yes. And it is not the number of complaints that is the most useful metric – it is the appearance of the cumulative sum of the complaint severity score. And we need a method for diagnosing and treating the cause of the Niggles too. We need to convert the feedback information into effective action.

Ah ha! Now I understand what the role of the Governance Department is: to apply the tools and techniques of Improvement Science proactively.  But our Governance Department have not been trained to do this!

Then that is one place to start – and their role needs to evolve from Inspectors and Supervisors to Demonstrators and Educators – ultimately everyone in the organisation needs to be a competent Healthcare Improvementologist.

OK – I now now what to do next. But wait a minute. This is going to cost a fortune!

This is just one small first step.  The next step is to redesign the processes so the errors do not happen in the first place. The cumulative cost saving from eliminating the repeated checking, correcting, box-ticking, documenting, investigating, compensating and insuring is much much more than the one-off investment in learning safe system design.

So the Finance Director should be a champion for safety and quality too.

Yup!

Brill. Thanks. And can I ask one more question? I do not want to appear to skeptical but how do we know we can trust that this risk-estimation system has been designed and implemented correctly? How do we know we are not being bamboozled by statisticians? It has happened before!

That is the best question yet.  It is important to remember that HSMR is counting deaths in hospital which means that it is not actually the risk of harm to the patient that is measured – it is the risk to the reputation of hospital! So the answer to your question is that you demonstrate your deep understanding of the rationle and method of risk-of-harm estimation by listing all the ways that such a system could be deliberately “gamed” to make the figures look better for the hospital. And then go out and look for hard evidence of all the “games” that you can invent. It is a sort of creative poacher-becomes-gamekeeper detective exercise.

OK – I sort of get what you mean. Can you give me some examples?

Yes. The HSMR method is based on deaths-in-hospital so discharging a patient from hospital before they die will make the figures look better. Suppose one hospital has more access to end-of-life care in the community than another: their HSMR figures would look better even though exactly the same number of people died. Another is that the HSMR method is weighted towards admissions classified as “emergencies” – so if a hospital admits more patients as “emergencies” who are not actually very sick and discharges them quickly then this will inflated their estimated deaths and make their actual mortality ratio look better – even though the risk-of-harm to patients has not changed.

OMG – so if we have pressure to meet 4 hour A&E targets and we get paid more for an emergency admission than an A&E attendance then admitting to an Assessmen Area and discharging within one day will actually reward the hospital financially, operationally and by apparently reducing their HSMR even though there has been no difference at all to the care that patients actually recieve?

Yes. It is an inevitable outcome of the current system design.

But that means that if I am gaming the system and my HSMR is not getting better then the risk-of-harm to patients is actually increasing and my HSMR system is giving me false reassurance that everything is OK.   Wow! I can see why some people might not want that realisation to be public knowledge. So what do we do?

Design the system so that the rewards are aligned with lower risk of harm to patients and improved outcomes.

Is that possible?

Yes. It is called a Win-Win-Win design.

How do we learn how to do that?

Improvement Science.

Footnote I:

The graphs tell a story but they may not create a useful sense of perspective. It has been said that there is a 1 in 300 chance that if you go to hospital you will not leave alive for avoidable causes. What! It cannot be as high as 1 in 300 surely?

OK – let us use the published Mid-Staffs data to test this hypothesis. Over 12 years there were about 150,000 admissions and an estimated 1,200 excess deaths (if all the risk were concentrated into the excess deaths which is not what actually happens). That means a 1 in 130 odds of an avoidable death for every admission! That is twice as bad as the estimated average.

The Mid Staffordshire statistics are bad enough; but the NHS-as-a-whole statistics are cumulatively worse because there are 100’s of other hospitals that are each generating not-as-obvious avoidable mortality. The data is very ‘noisy’ so it is difficult even for a statistical expert to separate the message from the morass.

And remember – that  the “expected” mortality is estimated from the average for the whole NHS – which means that if this average is higher than it could be then there is a statistical bias and we are being falsely reassured by being ‘not statistically significantly different’ from the pack.

And remember too – for every patient and family that suffers and avoidable death there are many more that have to live with the consequences of avoidable but non-fatal harm.  That is called avoidable morbidity.  This is what the risk really means – everyone has a higher risk of some degree of avoidable harm. Psychological and physical harm.

This challenge is not just about preventing another Mid Staffs – it is about preventing 1000’s of avoidable deaths and 100,000s of patients avoidably harmed every year in ‘average’ NHS trusts.

It is not a mass conspiracy of bad nurses, bad doctors, bad managers or bad policians that is the root cause.

It is poorly designed processes – and they are poorly designed because the nurses, doctors and managers have not learned how to design better ones.  And we do not know how because we were not trained to.  And that education gap was an accident – an unintended error of omission.  

Our urgently-improve-NHS-safety-challenge requires a system-wide safety-by-design educational and cultural transformation.

And that is possible because the knowledge of how to design, test and implement inherently safe processes exists. But it exists outside healthcare.

And that safety-by-design training is a worthwhile investment because safer-by-design processes cost less to run because they require less checking, less documenting, less correcting – and all the valuable nurse, doctor and manager time freed up by that can be reinvested in more care, better care and designing even better processes and systems.

Everyone Wins – except the cynics who have a choice: to eat humble pie or leave.

Footnote II:

In the debate that has followed the publication of the Francis Report a lot of scrutiny has been applied to the method by which an estimated excess mortality number is created and it is necessary to explore this in a bit more detail.

The HSMR is an estimate of relative risk – it does not say that a set of specific patients were the ones who came to harm and the rest were OK. So looking at individual deaths and looking for the specific causes is to completely misunderstand the method. So looking at the actual deaths individually and looking for identifiable cause-and-effect paths is an misuse of the message.  When very few if any are found to conclude that HSMR is flawed is an error of logic and exposes the ignorance of the analyst further.

HSMR is not perfect though – it has weaknesses.  It is a benchmarking process the”standard” of 100 is always moving because the collective goal posts are moving – the reference is always changing . HSMR is estimated using data submitted by hospitals themselves – the clinical coding data.  So the main weakness is that it is dependent on the quality of the clinicial coding – the errors of comission (wrong codes) and the errors of omission (missing codes). Garbage In Garbage Out.

Hospitals use clinically coded data for other reasons – payment. The way hospitals are now paid is based on the volume and complexity of that activity – Payment By Results (PbR) – using what are called Health Resource Groups (HRGs). This is a better and fairer design because hospitals with more complex (i.e. costly to manage) case loads get paid more per patient on average.  The HRG for each patient is determined by their clinical codes – including what are called the comorbidities – the other things that the patient has wrong with them. More comorbidites means more complex and more risky so more money and more risk of death – roughly speaking.  So when PbR came in it becamevery important to code fully in order to get paid “properly”.  The problem was that before PbR the coding errors went largely unnoticed – especially the comorbidity coding. And the errors were biassed – it is more likely to omit a code than to have an incorrect code. Errors of omission are harder to detect. This meant that by more complete coding (to attract more money) the estimated casemix complexity would have gone up compared with the historical reference. So as actual (not estimated) NHS mortality has gone down slightly then the HSMR yardstick becomes even more distorted.  Hospitals that did not keep up with the Coding Game would look worse even though  their actual risk and mortality may be unchanged.  This is the fundamental design flaw in all types of  benchmarking based on self-reported data.

The actual problem here is even more serious. PbR is actually a payment for activity – not a payment for outcomes. It is calculated from what it cost to run the average NHS hospital using a technique called Reference Costing which is the same method that manufacturing companies used to decide what price to charge for their products. It has another name – Absorption Costing.  The highest performers in the manufacturing world no longer use this out-of-date method. The implication of using Reference Costing and PbR in the NHS are profound and dangerous:

If NHS hospitals in general have poorly designed processes that create internal queues and require more bed days than actually necessary then the cost of that “waste” becomes built into the future PbR tariff. This means average length of stay (LOS) is financially rewarded. Above average LOS is financially penalised and below average LOS makes a profit.  There is no financial pressure to improve beyound average. This is called the Regression to the Mean effect.  Also LOS is not a measure of quality – so there is a to shorten length of stay for purely financial reasons – to generate a surplus to use to fund growth and capital investment.  That pressure is non-specific and indiscrimiate.  PbR is necessary but it is not sufficient – it requires an quality of outcome metric to complete it.    

So the PbR system is based on an out-of-date cost-allocation model and therefore leads to the very problems that are contributing to the MidStaffs crisis – financial pressure causing quality failures and increased risk of mortality.  MidStaffs may be a chance victim of a combination of factors coming together like a perfect storm – but those same factors are present throughout the NHS because they are built into the current design.

One solution is to move towards a more up-to-date financial model called stream costing. This uses the similar data to reference costing but it estimates the “ideal” cost of the “necessary” work to achieve the intended outcome. This stream cost becomes the focus for improvement – the streams where there is the biggest gap between the stream cost and the reference cost are the focus of the redesign activity. Very often the root cause is just poor operational policy design; sometimes it is quality and safety design problems. Both are solvable without investment in extra capacity. The result is a higher quality, quicker, lower-cost stream. Win-win-win. And in the short term that  is rewarded by a tariff income that exceeds cost and a lower HSMR.

Radically redesigning the financial model for healthcare is not a quick fix – and it requires a lot of other changes to happen first. So the sooner we start the sooner we will arrive. 

The Writing On The Wall – Part I

writing_on_the_wallThe writing is on the wall for the NHS.

It is called the Francis Report and there is a lot of it. Just the 290 recommendations runs to 30 pages. It would need a very big wall and very small writing to put it all up there for all to see.

So predictably the speed-readers have latched onto specific words – such as “Inspectors“.

Recommendation 137Inspection should remain the central method for monitoring compliance with fundamental standards.”

And it goes further by recommending “A specialist cadre of hospital inspectors should be established …”

A predictable wail of anguish rose from the ranks “Not more inspectors! The last lot did not do much good!”

The word “cadre” is not one that is used in common parlance so I looked it up:

Cadre: 1. a core group of people at the center of an organization, especially military; 2. a small group of highly trained people, often part of a political movement.

So it has a military, centralist, specialist, political flavour. No wonder there was a wail of anguish! Perhaps this “cadre of inspectors” has been unconsciously labelled with another name? Persecutors.

Of more interest is the “highly trained” phrase. Trained to do what? Trained by whom? Clearly none of the existing schools of NHS management who have allowed the fiasco to happen in the first place. So who – exactly? Are these inspectors intended to be protectors, persecutors, or educators?

And what would they inspect?

And how would they use the output of such an inspection?

Would the fear of the inspection and its possible unpleasant consequences be the stick to motivate compliance?

Is the language of the Francis Report going to create another brick wall of resistance from the rubble of the ruins of the reputation of the NHS?  Many self-appointed experts are already saying that implementing 290 recommendations is impossible.

They are incorrect.

The number of recommendations is a measure of the breadth and depth of the rot. So the critical-to-success factor is to implement them in a well-designed order. Get the first few in place and working and the rest will follow naturally.  Get the order wrong and the radical cure will kill the patient.

So where do we start?

Let us look at the inspection question again.  Why would we fear an external inspection? What are we resisting? There are three facets to this: first we do not know what is expected of us;  second we do not know if we can satisfy the expectation; and third we fear being persecuted for failing to achieve the impossible.

W Edwards Deming used a very effective demonstration of the dangers of well-intended but badly-implemented quality improvement by inspection: it was called the Red Bead Game.  The purpose of the game was to illustrate how to design an inspection system that actually helps to achieve the intended goal. Sustained improvement.

This is applied Improvement Science and I will illustrate how it is done with a real and current example.


I am assisting a department in a large NHS hospital to improve the quality of their service. I have been sent in as an external inspector.  The specific quality metric they have been tasked to improve is the turnaround time of the specialist work that they do. This is a flow metric because a patient cannot leave hospital until this work is complete – and more importantly it is a flow and quality metric because when the hospital is full then another patient, one who urgently needs to be admitted, will be waiting for the bed to be vacated. One in one out.

The department have been set a standard to meet, a target, a specification, a goal. It is very clear and it is easily measurable. They have to turnaround each job of work in less than 2 hours.  This is called a lead time specification and it is arbitrary.  But it is not unreasonable from the perspective of the patient waiting to leave and for the patient waiting to be admitted. Neither want to wait.

The department has a sophisticated IT system that measures their performance. They use it to record when each job starts and when each job is finished and from those two events the software calculates the lead time for each job in real-time. At the end of each day the IT system counts how many jobs were completed in less than 2 hours and compares this with how many were done in total and calculates a ratio which it presents as a percentage in the range of 0 and 100. This is called the process yield.  The department are dedicated and they work hard and they do all the work that arrives each day the same day – no matter how long it takes. And at the end of each day they have their score for that day. And it is almost never 100%.  Not never. Almost never. But it is not good enough and they are being blamed for it. In turn they blame others for making their job more difficult. It is a blame-game and it has been going on for years.

So how does an experienced Improvement Science-trained Inspector approach this sort of “wicked” problem?

First we need to get the writing on the wall – we need to see the reality – we need to “plot the dots” – we need to see what the performance is doing over time – we need to see the voice of the process. And that requires only their data, a pencil, some paper and for the chart to be put on the on the wall where everyone can see it.

Chart_1This is what their daily % yield data for three consecutive weeks looked like as a time-series chart. The thin blue line is the 100% yield target.

The 100% target was only achieved on three days – and they were all Sundays. On the other Sunday it was zero (which may mean that there was no data to calculate a ratio from).

There is wide variation from one day to the next and it is the variation as well as the average that is of interest to an improvement scientist. What is the source of the variation it? If 100% yield can be achieved some days then what is different about those days?

Chart_2

So our Improvement science-trained Inspector will now re-plot the data in a different way – as rational groups. This exposes the issue clearly. The variation on Weekends is very wide and the performance during the Weekdays is much less variable.  What this says is that the weekend system and the weekday system are different. This means that it is invalid to combine the data for both.

It also raises the question of why there is such high variation in yield only at weekends?  The chart cannot answer the question, so our IS-trained Inspector digs a bit deeper and discovers that the volume of work done at the weekend is low, the staffing of the department is different, and that the recording of the events is less reliable. In short – we cannot even trust the weekend data – so we have two reasons to justify excluding it from our chart and just focusing on what happens during the week.

Chart_3We re-plot our chart, marking the excluded weekend data as not for analysis.

We can now see that the weekday performance of our system is visible, less variable, and the average is a long way from 100%.

The team are working hard and still only achieving mediocre performance. That must mean that they need something that is missing. Motivating maybe. More people maybe. More technology maybe.  But there is no more money for more people or technology and traditional JFDI motivation does not seem to have helped.

This looks like an impossible task!

Chart_4

So what does our Inspector do now? Mark their paper with a FAIL and put them on the To Be Sacked for Failing to Meet an Externally Imposed Standard heap?

Nope.

Our IS-trained Inspector calculates the limits of expected performance from the data  and plots these limits on the chart – the red lines.  The computation is not difficult – it can be done with a calculator and the appropriate formula. It does not need a sophisticated IT system.

What this chart now says is “The current design of this process is capable of delivering between 40% and 85% yield. To expect it do do better is unrealistic”.  The implication for action is “If we want 100% yield then the process needs to be re-designed.” Persecution will not work. Blame will not work. Hoping-for-the-best will not work. The process must be redesigned.

Our improvement scientist then takes off the Inspector’s hat and dons the Designer’s overalls and gets to work. There is a method to this and it is called 6M Design®.

Chart_5

First we need to have a way of knowing if any future design changes have a statistically significant impact – for better or for worse. To do this the chart is extended into the future and the red lines are projected forwards in time as the black lines called locked-limits.  The new data is compared with this projected baseline as it comes in.  The weekends and bank holidays are excluded because we know that they are a different system. On one day (20/12/2012) the yield was surprisingly high. Not 100% but more than the expected upper limit of 85%.

Chart_6The alerts us to investigate and we found that it was a ‘hospital bed crisis’ and an ‘all hands to the pumps’ distress call went out.

Extra capacity was pulled to the process and less urgent work was delayed until later.  It is the habitual reaction-to-a-crisis behaviour called “expediting” or “firefighting”.  So after the crisis had waned and the excitement diminished the performance returned to the expected range. A week later the chart signals us again and we investigate but this time the cause was different. It was an unusually quiet day and there was more than enough hands on the pumps.

Both of these days are atypically good and we have an explanation for each of them. This is called an assignable cause. So we are justified in excluding these points from our measure of the typical baseline capability of our process – the performance the current design can be expected to deliver.

An inexperienced manager might conclude from these lessons that what is needed is more capacity. That sounds and feels intuitively obvious and it is correct that adding more capacity may improve the yield – but that does not prove that lack of capacity is the primary cause.  There are many other causes of long lead times  just as there are many causes of headaches other than brain tumours! So before we can decide the best treatment for our under-performing design we need to establish the design diagnosis. And that is done by inspecting the process in detail. And we need to know what we are looking for; the errors of design commission and the errors of design omission. The design flaws.

Only a trained and experienced process designer can spot the flaws in a process design. Intuition will trick the untrained and inexperienced.


Once the design diagnosis is established then the redesign stage can commence. Design always works to a specification and in this case it was clear – to significantly improve the yield to over 90% at no cost.  In other words without needing more people, more skills, more equipment, more space, more anything. The design assignment was made trickier by the fact that the department claimed that it was impossible to achieve significant improvement without adding extra capacity. That is why the Inspector had been sent in. To evaluate that claim.

The design inspection revealed a complex adaptive system – not a linear, deterministic, production-line that manufactures widgets.  The department had to cope with wide variation in demand, wide variation in quality of request, wide variation in job complexity, and wide variation in urgency – all at the same time.  But that is the nature of healthcare and acute hospital work. That is the expected context.

The analysis of the current design revealed that it was not well suited for this requirement – and the low yield was entirely predictable. The analysis also revealed that the root cause of the low yield was not lack of either flow-capacity or space-capacity.

This insight led to the suggestion that it would be possible to improve yield without increasing cost. The department were polite but they did not believe it was possible. They had never seen it, so why should they be expected to just accept this on faith?

Chart_7So, the next step was to develop, test and demonstrate a new design and that was done in three stages. The final stage was the Reality Test – the actual process design was changed for just one day – and the yield measured and compared with the predicted improvement.

This was the validity test – the proof of the design pudding. And to visualise the impact we used the same technique as before – extending the baseline of our time-series chart, locking the limits, and comparing the “after” with the “before”.

The yellow point marks the day of the design test. The measured yield was well above the upper limit which suggested that the design change had made a significant improvement. A statistically significant improvement.  There was no more capacity than usual and the day was not unusually quiet. At the end of the day we held a team huddle.

Our first question was “How did the new design feel?” The consensus was “Calmer, smoother, fewer interruptions” and best of all “We finished on time – there was no frantic catch up at the end of the day and no one had to stay late to complete the days work!”

The next question was “Do we want to continue tomorrow with this new design or revert back to the old one?” The answer was clear “Keep going with the new design. It feels better.”

The same chart was used to show what happened over the next few days – excluding the weekends as before. The improvement was sustained – it did not revert to the original because the process design had been changed. Same work, same capacity, different process – higher yield. The red flags on the charts mark the statistically significant evidence of change and the cluster of red flags is very strong statistical evidence that the improvement is not due to chance.

The next phase of the 6M Design® method is to continue to monitor the new process to establish the new baseline of expectation. That will require at least twelve data points and it is in progress. But we have enough evidence of a significant improvement. This means that we have no credible justification to return to the old design, and it also implies that it is no longer valid to compare the new data against the old projected limits. Our chart tells us that we need to split the data into before-and-after and to calculate new averages and limits for each segment separately. We have changed the voice of the process by changing the design.

Chart_8And when we split the data at the point-of-change then the red flags disappear – which means that our new design is stable. And it has a new capability – a better one. We have moved closer to our goal of 100% yield. It is still early days and we do not really have enough data to calculate the new capability.

What we can say is that we have improved average quality yield from 63% to about 90% at no cost using a sequence of process diagnose, design, deliver.  Study-Plan-Do.

And we have hard evidence that disproves the impossibility hypothesis.


And that was the goal of the first design change – it was not to achieve 100% yield in one jump. Our design simulation had predicted an improvement to about 90%.  And there are other design changes to follow that need this stable foundation to build on.  The order of implementation is critical – and each change needs time to bed in before the next change is made. That is the nature of the challenge of improving a complex adaptive system.

The cost to the department was zero but the benefit was huge.  The bigger benefit to the organisation was felt elsewhere – the ‘customers’ saw a higher quality, quicker process – and there will be a financial benefit for the whole system. It will be difficult to measure with our current financial monitoring systems but it will be real and it will be there – lurking in the data.

The improvement required a trained and experienced Inspector/Designer/Educator to start the wheel of change turning. There are not many of these in the NHS – but the good news is that the first level of this training is now available.

What this means for the post-Francis Report II NHS is that those who want to can choose to leap over the wall of resistance that is being erected by the massing legions of noisy cynics. It means we can all become our own inspectors. It means we can all become our own improvers. It means we can all learn to redesign our systems so that they deliver higher safety, better quality, more quickly and at no extra one-off or recurring cost.  We all can have nothing to fear from the Specialist Cadre of Hospital Inspectors.

The writing is on the wall.


15/02/2013 – Two weeks in and still going strong. The yield has improved from 63% to 92% and is stable. Improvement-by-design works.

10/03/2013 – Six weeks in and a good time to test if the improvement has been sustained.

TTO_Yield_WeeklyThe chart is the weekly performance plotted for 17 weeks before the change and for 5 weeks after. The advantage of weekly aggregated data is that it removes the weekend/weekday 7-day cycle and reduces the effect of day-to-day variation.

The improvement is obvious, significant and has been sustained. This is the objective improvement. More important is the subjective improvement.

Here is what Chris M (departmental operational manager) wrote in an email this week (quoted with permission):

Hi Simon

It is I who need to thank you for explaining to me how to turn our pharmacy performance around and ultimately improve the day to day work for the pharmacy team (and the trust staff). This will increase job satisfaction and make pharmacy a worthwhile career again instead of working in constant pressure with a lack of achievement that had made the team feel rather disheartened and depressed. I feel we can now move onwards and upwards so thanks for the confidence boost.

Best wishes and many thanks

Chris

This is what Improvement Science is all about!

Kicking the Habit

no_smoking_400_wht_6805It is not easy to kick a habit. We all know that. And for some reason the ‘bad’ habits are harder to kick than the ‘good’ ones. So what is bad about a ‘bad habit’ and why is it harder to give up? Surely if it was really bad it would be easier to give up?

Improvement is all about giving up old ‘bad’ habits and replacing them with new ‘good’ habits – ones that will sustain the improvement. But there is an invisible barrier that resists us changing any habit – good or bad. And it is that barrier to habit-breaking that we need to understand to succeed. Luck is not a reliable ally.

What does that habit-breaking barrier look like?

The problem is that it is invisible – or rather it is emotional – or to be precise it is chemical.

Our emotions are the output of a fantastically complex chemical system – our brains. And influencing the chemical balance of our brains can have a profound effect on our emotions.  That is how anti-depressants work – they very slightly adjust the chemical balance of every part of our brains. The cumulative effect is that we feel happier.  Nicotine has a similar effect.

And we can achieve the same effect without resorting to drugs or fags – and we can do that by consciously practising some new mental habits until they become ingrained and unconscious. We literally overwrite the old mental habit.

So how do we do this?

First we need to make the mental barrier visible – and then we can focus our attention on eroding it. To do that we need to remove the psychological filter that we all use to exclude our emotions. It is rather like taking off our psychological sunglasses.

When we do that the invisible barrier jumps into view: illuminated by the glare of three negative emotions.  Sadness, fear, and anxiety.  So whenever we feel any of these we know there is a barrier to improvement hiding  the emotional smoke. This is the first stage: tune in to our emotions.

The next step is counter-intuitive. Instead of running away from the negative feeling we consciously flip into a different way of thinking.  We actively engage with our negative feelings – and in a very specific way. We engage in a detached, unemotional, logical, rational, analytical  ‘What caused that negative feeling?’ way.

We then focus on the causes of the negative emotions. And when we have the root causes of our Niggles we design around them, under them, and over them.  We literally design them out of our heads.

The effect is like magic.

And this week I witnessed a real example of this principle in action.

figure_pressing_power_button_150_wht_10080One team I am working with experienced the Power of Improvementology. They saw the effect with their own eyes.  There were no computers in the way, no delays, no distortion and no deletion of data to cloud the issue. They saw the performance of their process jump dramatically – from a success rate of 60% to 96%!  And not just the first day, the second day too.  “Surprised and delighted” sums up their reaction.

So how did we achieve this miracle?

We just looked at the process through a different lens – one not clouded and misshapen by old assumptions and blackened by ignorance of what is possible.  We used the 6M Design® lens – and with the clarity of insight it brings the barriers to improvement became obvious. And they were dissolved. In seconds.

Success then flowed as the Dam of Disbelief crumbled and was washed away.

figure_check_mark_celebrate_anim_150_wht_3617The chaos has gone. The interruptions have gone. The expediting has gone. The firefighting has gone. The complaining has gone.  These chronic Niggles have have been replaced by the Nuggets of calm efficiency, new hope and visible excitement.

And we know that others have noticed the knock-on effect because we got an email from our senior executive that said simply “No one has moaned about TTOs for two days … something has changed.”    

That is Improvementology-in-Action.

 

Curing Chronic Carveoutosis

pin_marker_lighting_up_150_wht_6683Last week the Ray Of Hope briefly illuminated a very common system design disease called carveoutosis.  This week the RoH will tarry a little longer to illuminate an example that reveals the value of diagnosing and treating this endemic process ailment.

Do you remember the days when we used to have to visit the Central Post Office in our lunch hour to access a quality-of-life-critical service that only a Central Post Office could provide – like getting a new road tax disc for our car?  On walking through the impressive Victorian entrances of these stalwart high street institutions our primary challenge was to decide which queue to join.

In front of each gleaming mahogony, brass and glass counter was a queue of waiting customers. Behind was the Post Office operative. We knew from experience that to be in-and-out before our lunch hour expired required deep understanding of the ways of people and processes – and a savvy selection.  Some queues were longer than others. Was that because there was a particularly slow operative behind that counter? Or was it because there was a particularly complex postal problem being processed? Or was it because the customers who had been waiting longer had identified that queue was fast flowing and had defected to it from their more torpid streams? We know that size is not a reliable indicator of speed or quality.figure_juggling_time_150_wht_4437

The social pressure is now mounting … we must choose … dithering is a sign of weakness … and swapping queues later is another abhorrent behaviour. So we employ our most trusted heuristic – we join the end of the shortest queue. Sometimes it is a good choice, sometimes not so good!  But intuitively it feels like the best option.

Of course  if we choose wisely and we succeed in leap-frogging our fellow customers then we can swagger (just a bit) on the way out. And if not we can scowl and mutter oaths at others who (by sheer luck) leap frog us. The Post Office Game is fertile soil for the Aint’ It Awful game which we play when we arrive back at work.

single_file_line_PA_150_wht_3113But those days are past and now we are more likely to encounter a single-queue when we are forced by necessity to embark on a midday shopping sortie. As we enter we see the path of the snake thoughtfully marked out with rope barriers or with shelves hopefully stacked with just-what-we-need bargains to stock up on as we drift past.  We are processed FIFO (first-in-first-out) which is fairer-for-all and avoids the challenge of the dreaded choice-of-queue. But the single-queue snake brings a new challenge: when we reach the head of the snake we must identify which operative has become available first – and quickly!

Because if we falter then we will incur the shame of the finger-wagging or the flashing red neon arrow that is easily visible to the whole snake; and a painful jab in the ribs from the impatient snaker behind us; and a chorus of tuts from the tail of the snake. So as we frantically scan left and right along the line of bullet-proof glass cells looking for clues of imminent availability we run the risk of developing acute vertigo or a painful repetitive-strain neck injury!

stick_figure_sitting_confused_150_wht_2587So is the single-queue design better?  Do we actually wait less time, the same time or more time? Do we pay a fair price for fair-for-all queue design? The answer is not intuitively obvious because when we are forced to join a lone and long queue it goes against our gut instinct. We feel the urge to push.

The short answer is “Yes”.  A single-queue feeding tasks to parallel-servers is actually a better design. And if we ask the Queue Theorists then they will dazzle us with complex equations that prove it is a better design – in theory.  But the scary-maths does not help us to understand how it is a better design. Most of us are not able to convert equations into experience; academic rhetoric into pragmatic reality. We need to see it with our own eyes to know it and understand it. Because we know that reality is messier than theory.    

And if it is a better design then just how much better is it?

To illustrate the potential advantage of a single-queue design we need to push the competing candiates to their performance limits and then measure the difference. We need a real example and some real data. We are Improvementologists! 

First we need to map our Post Office process – and that reveals that we have a single step process – just the counter. That is about as simple as a process gets. Our map also shows that we have a row of counters of which five are manned by fully trained Post Office service operatives.

stick_figure_run_clock_150_wht_7094Now we can measure our process and when we do that we find that we get an average of 30 customers per hour walking in the entrance and and average of 30 cusomers an hour walking out. Flow-out equals flow-in. Activity equals demand. And the average flow is one every 2 minutes. So far so good. We then observe our five operatives and we find that the average time from starting to serve one customer to starting to serve the next is 10 minutes. We know from our IS training that this is the cycle time. Good.

So we do a quick napkin calculation to check and that the numbers make sense: our system of five operatives working in parallel, each with an average cycle time of 10 minutes can collectively process a customer on average every 2 minutes – that is 30 per hour on average. So it appears we have just enough capacity to keep up with the flow of work  – we are at the limit of efficiency.  Good.

CarveOut_00We also notice that there is variation in the cycle time from customer to customer – so we plot our individual measurements asa time-series chart. There does not seem to be an obvious pattern – it looks random – and BaseLine says that it is statistically stable. Our chart tells us that a range of 5 to 15 minutes is a reasonable expectation to set.

We also observe that there is always a queue of waiting customers somewhere – and although the queues fluctuate in size and location they are always there.

 So there is always a wait for some customers. A variable wait; an unpredictable wait. And that is a concern for us because when the queues are too numerous and too long then we see customers get agitated, look at their watches, shrug their shoulders and leave – taking their custom and our income with them and no doubt telling all their friends of their poor experience. Long queues and long waits are bad for business.

And we do not want zero queues either because if there is no queue and our operatives run out of work then they become under-utilised and our system efficiency and productivity falls.  That means we are incurring a cost but not generating an income. No queues and idle resources are bad for business too.

And we do not want a mixture of quick queues and slow queues because that causes complaints and conflict.  A high-conflict customer complaint experience is bad for business too! 

What we want is a design that creates small and stable queues; ones that are just big enough to keep our operatives busy and our customers not waiting too long.

So which is the better design and how much better is it? Five-queues or a single-queue? Carve-out or no-carve-out?

To find the answer we decide to conduct a week-long series of experiments on our system and use real data to reveal the answer. We choose the time from a customer arriving to the same customer leaving as our measure of quality and performance – and we know that the best we can expect is somewhere between 5 and 15 minutes.  We know from our IS training that is called the Lead Time.

time_moving_fast_150_wht_10108On day #1 we arrange our Post Office with five queues – clearly roped out – one for each manned counter.  We know from our mapping and measuring that customers do not arrive in a steady stream and we fear that may confound our experiment so we arrange to admit only one of our loyal and willing customers every 2 minutes. We also advise our loyal and willing customers which queue they must join before they enter to avoid the customer choice challenges.  We decide which queue using a random number generator – we toss a dice until we get a number between 1 and 5.  We record the time the customer enters on a slip of paper and we ask the customer to give it to the operative and we instruct our service operatives to record the time they completed their work on the same slip and keep it for us to analyse later. We run the experiment for only 1 hour so that we have a sample of 30 slips and then we collect the slips,  calculate the difference between the arrival and departure times and plot them on a time-series chart in the order of arrival.

CarveOut_01This is what we found.  Given that the time at the counter is an average of 10 minutes then some of these lead times seem quite long. Some customers spend more time waiting than being served. And we sense that the performance is getting worse over time.

So for the next experiment we decide to open a sixth counter and to rope off a sixth queue. We expect that increasing capacity will reduce waiting time and we confidently expect the performance to improve.

On day #2 we run our experiment again, letting customers in one every 2 minutes as before and this time we use all the numbers on the dice to decide which queue to direct each customer to.  At the end of the hour we collect the slips, calculate the lead times and plot the data – on the same chart.

CarveOut_02This is what we see.

It does not look much better and that is big surprise!

The wide variation from customer to customer looks about the same but with the Eye of Optimism we get a sense that the overall performance looks a bit more stable.

So we conclude that adding capacity (and cost) may make a small difference.

But then we remember that we still only served 30 customers – which means that our income stayed the same while our cost increased by 20%. That is definitely NOT good for business: it is not goiug to look good in a business case “possible marginally better quality and 20% increase in cost and therefore price!”

So on day #3 we change the layout. This time we go back to five counters but we re-arrange the ropes to create a single-queue so the customer at the front can be ‘pulled’ to the first available counter. Everything else stays the same – one customer arriving every 2 minutes, the dice, the slips of paper, everything.  At the end of the hour we collect the slips, do our sums and plot our chart.

CarveOut_03And this is what we get! The improvement is dramatic. Both the average and the variation has fallen – especially the variation. But surely this cannot be right. The improvement is too good to be true. We check our data again. Yes, our customers arrived and departed on average one every 2 minutes as before; and all our operatives did the work in an average of 10 minutes just as before. And we had the exactly the same capacity as we had on day #1. And we finished on time. It is correct. We are gobsmaked. It is like a magic wand has been waved over our process. We never would have predicted  that just moving the ropes around to could have such a big impact.  The Queue Theorists were correct after all!

But wait a minute! We are delivering a much better customer experience in terms of waiting time and at the same cost. So could we do even better with six counters open? What will happen if we keep the single-queue design and open the sixth desk?  Before it made little difference but now we doubt our ability to guess what will happen. Our intuition seems to keep tricking us. We are losing our confidence in predicting what the impact will be. We are in counter-intuitive land! We need to run the experiment for real.

So on day #4 we keep the single-queue and we open six desks. We await the data eagerly.

CarveOut_04And this is what happened. Increasing the capacity by 20% has made virtually no difference – again. So we now have two pieces of evidence that say – adding extra capacity did not make a difference to waiting times. The variation looks a bit less though but it is marginal.

It was changing the Queue Design that made the difference! And that change cost nothing. Rien. Nada. Zippo!

That will look much better in our report but now we have to face the emotional discomfort of having to re-evaluate one of our deepest held assumptions.

Reality is telling us that we are delivering a better quality experience using exactly the same resources and it cost nothing to achieve. Higher quality did NOT cost more. In fact we can see that with a carve-out design when we added capacity we just increased the cost we did NOT improve quality. Wow!  That is a shock. Everything we have been led to believe seems to be flawed.

Our senior managers are not going to like this message at all! We will be challening their dogma directly. And they do not like that. Oh dear! 

Now we can see how much better a no-carveout single-queue pull-design can work; and now we can explain why single-queue designs  are used; and now we can show others our experiment and our data and if they do not believe us they can repeat the experiment themselves.  And we can see that it does not need a real Post Office – a pad of Post It® Notes, a few stopwatches and some willing helpers is all we need.

And even though we have seen it with our own eyes we still struggle to explain how the single-queue design works better. What actually happens? And we still have that niggling feeling that the performance on day #1 was unstable.  We need to do some more exploring.

So we run the day#1 experiment again – the five queues – but this time we run it for a whole day, not just an hour.

CarveOut_06

Ah ha!   Our hunch was right.  It is an unstable design. Over time the variation gets bigger and bigger.

But how can that happen?

Then we remember. We told the customers that they could not choose the shortest queue or change queue after they had joined it.  In effect we said “do not look at the other queues“.

And that happens all the time on our systems when we jealously hide performance data from each other! If we are seen to have a smaller queue we get given extra work by the management or told to slow down by the union rep!  

So what do we do now?  All we are doing is trying to improve the service and all we seem to be achieving is annoying more and more people.

What if we apply a maximum waiting time target, say of 1 hour, and allow customers to jump to the front of their queue if they are at risk if breaching the target? That will smooth out spikes and give everyone a fair chance. Customers will understand. It is intuitively obvious and common sense. But our intuition has tricked us before … 

So we run the experiment again and this time we tell our customers that if they wait 50 minutes then they can jump to the front of their queue. They appreciate this because they now have a upper limit on the time they will wait.  

CarveOut_07And this is what we observe. It looks better than before, at least initially, and then it goes pear-shaped.

All we have done with our ‘carve-out and-expedite-the-long-waiters’ design is to defer the inevitable – the crunch. We cannot keep our promise. By the end everyone is pushing to the frontof the queue. It is a riot!  

And there is more. Look at the lead time for the last few customers – two hours. Not only have they waited a long time, but we have had to stay open for two hours longer. That is a BIG cost pessure in overtime payments.

So, whatever way we look at it: a single-queue design is better.  And no one loses out! The customers have a short and predictable waiting time; the operatives are kept occupied and go home on time; and the executives bask in the reflected glory of the excellent customer feedback.  It is a Three Wins® design.

Seeing is believing – and we now know that it is worth diagnosing and treating carveoutosis.

And the only thing left to do is to explain is how a single-queue design works better. It is not obvious is it? 

puzzle_lightbulb_build_PA_150_wht_4587And the best way to do that is to play the Post Office Game and see what actually happens. 

A big light-bulb moment awaits!

 

 

Update: My little Sylvanian friends have tried the Post Office Game and kindly sent me this video of the before  Sylvanian Post Office Before and the after Sylvanian Post Office After. They say they now know how the single-queue design works better. 

 

A Ray Of Hope

stick_figure_shovel_snow_anim_150_wht_9579It does not seem to take much to bring a real system to an almost standstill.  Six inches of snow falling between 10 AM and 2 PM in a Friday in January seems to be enough!

It was not so much the amount of snow – it was the timing.  The decision to close many schools was not made until after the pupils had arrived – and it created a logistical nightmare for parents. 

Many people suddenly needed to get home before they expected which created an early rush hour and gridlocked the road system.

The same number of people travelled the same distance in the same way as they would normally – it just took them a lot longer.  And the queues created more problems as people tried to find work-arounds to bypass the traffic jams.

How many thousands of hours of life-time was wasted sitting in near-stationary queues of cars? How many millions of poundsworth of productivity was lost? How much will the catchup cost? 

And yet while we grumble we shrug our shoulders and say “It is just one of those things. We cannot control the weather. We just have to grin and bear it.”  

Actually we do not have to. And we do not need a weather machine to control the weather. Mother Nature is what it is.

Exactly the same behaviour happens in many systems – and our conclusion is the same.  We assume the chaos and queues are inevitable.

They are not.

They are symptoms of the system design – and specifically they are the inevitable outcomes of the time-design.

But it is tricky to visualise the time-design of a system.  We can see the manifestations of the poor time-design, the queues and chaos, but we do not so easily perceive the causes. So the poor time-design persists. We are not completely useless though; there are lots of obvious things we can do. We can devise ingenious ways to manage the queues; we can build warehouses to hold the queues; we can track the jobs in the queues using sophisticated and expensive information technology; we can identify the hot spots; we can recruit and deploy expediters, problem-solvers and fire-fighters to facilitate the flow through the hottest of them; and we can pump capacity and money into defences, drains and dramatics. And our efforts seem to work so we congratulate ourselves and conclude that these actions are the only ones that work.  And we keep clamouring for more and more resources. More capacity, MORE capacity, MORE CAPACITY.

Until we run out of money!

And then we have to stop asking for more. And then we start rationing. And then we start cost-cutting. And then the chaos and queues get worse. 

And all the time we are not aware that our initial assumptions were wrong.

The chaos and queues are not inevitable. They are a sign of the time-design of our system. So we do have other options.  We can improve the time-design of our system. We do not need to change the safety-design; nor the quality-design; nor the money-design.  Just improving the time-design will be enough. For now.

So the $64,000,000 question is “How?”

Before we explore that we need to demonstrate What is possible. How big is the prize?

The class of system design problem that cause particular angst are called mixed-priority mixed-complexity crossed-stream designs.  We encounter dozens of them in our daily life and we are not aware of it.  One of particular interest to many is called a hospital. The mixed-priority dimension is the need to manage some patients as emergencies, some as urgent and some as routine. The mixed-complexity dimension is that some patients are easy and some are complex. The crossed-stream dimension is the aggregation of specialised resources into departments. Expensive equipment and specific expertise.  We then attempt to push patients with different priorites long different paths through these different departments . And it is a management nightmare! 

BlueprintOur usual and “obvious” response to this challenge is called a carve-out design. And that means we chop up our available resource capacity into chunks.  And we do that in two ways: chunks of time and chunks of space.  We try to simplify the problem by dissecting it into bits that we can understand. We separate the emergency departments from the  planned-care facilities. We separate outpatients from inpatients. We separate medicine from surgery – and we then intellectually dissect our patients into organ systems: brains, lungs, hearts, guts, bones, skin, and so on – and we create separate departments for each one. Neurology, Respiratory, Cardiology, Gastroenterology, Orthopaedics, Dermatology to list just a few. And then we become locked into the carve-out design silos like prisoners in cages of our own making.

And so it is within the departments that are sub-systems of the bigger system. Simplification, dissection and separation. Ad absurdam.

The major drawback with our carve-up design strategy is that it actually makes the system more complicated.  The number of necessary links between the separate parts grows exponentially.  And each link can hold a small queue of waiting tasks – just as each side road can hold a queue of waiting cars. The collective complexity is incomprehensible. The cumulative queue is enormous. The opportunity for confusion and error grows exponentially. Safety and quality fall and cost rises. Carve-out is an inferior time-design.

But our goal is correct: we do need to simplify the system so that means simplifying the time-design.

To illustrate the potential of this ‘simplify the time-design’ approach we need a real example.

One way to do this is to create a real system with lots of carve-out time-design built into it and then we can observe how it behaves – in reality. A carefully designed Table Top Game is one way to do this – one where the players have defined Roles and by following the Rules they collectively create a real system that we can map, measure and modify. With our Table Top Team trained and ready to go we then pump realistic tasks into our realistic system and measure how long they take in reality to appear out of the other side. And we then use the real data to plot some real time-series charts. Not theoretical general ones – real specific ones. And then we use the actual charts to diagnose the actual causes of the actual queues and actual chaos.

TimeDesign_BeforeThis is the time-series chart of a real Time-Design Game that has been designed using an actual hospital department and real observation data.  Which department it was is not of importance because it could have been one of many. Carve-out is everywhere.

During one run of the Game the Team processed 186 tasks and the chart shows how long each task took from arriving to leaving (the game was designed to do the work in seconds when in the real department it took minutes – and this was done so that one working day could be condensed from 8 hours into 8 minutes!)

There was a mix of priority: some tasks were more urgent than others. There was a mix of complexity: some tasks required more steps that others. The paths crossed at separate steps where different people did defined work using different skills and special equipment.  There were handoffs between all of the steps on all of the streams. There were  lots of links. There were many queues. There were ample opportunities for confusion and errors.

But the design of the real process was such that the work was delivered to a high quality – there were very few output errors. The yield was very high. The design was effective. The resources required to achieve this quality were represented by the hours of people-time availability – the capacity. The cost. And the work was stressful, chaotic, pressured, and important – so it got done. Everyone was busy. Everyone pulled together. They helped each other out. They were not idle. They were a good team. The design was efficient.

The thin blue line on the time-series chart is the “time target” set by the Organisation.  But the effective and efficient system design only achieved it 77% of the time.  So the “obvious” solution was to clamour for more people and for more space and for more equipment so that the work can be done more quickly to deliver more jobs on-time.  Unfortunately the Rules of the Time-Design Game do not allow this more-money option. There is no more money.

To succeed at the Time-Design Game the team must find a way to improve their delivery time performance with the capacity they have and also to deliver the same quality.  But this is impossible! If it were possible then the solution would be obvious and they would be doing it already. No one can succeed on the Time-Design Game. 

Wrong. It is possible.  And the assumption that the solution is obvious is incorrect. The solution is not obvious – at least to the untrained eye.

To the trained eye the time-series chart shows the characteristic signals of a carve-out time-design. The high task-to-task variation is highly suggestive as is the pattern of some of the earlier arrivals having a longer lead time. An experienced system designer can diagnose a carve-out time-design from a set of time-series charts of a process just as a doctor can diagnose the disease from the vital signs chart for a patient.  And when the diagnosis is confirmed with a verification test then the time-Redesign phase can start. 

TimeDesign_AfterPhase1This chart shows what happened after the time-design of the system was changed – after some of the carve-out design was modified. The Y-axis scale is the same as before – and the delivery time improvement is dramatic. The Time-ReDesigned system is now delivering 98% achievement of the “on time target”.

The important thing to be aware of is that exactly the same work was done, using exactly the same steps, and exactly the same resources. No one had to be retrained, released or recruited.  The quality was not impaired. And the cost was actually less because less overtime was needed to mop up the spillover of work at the end of the day.

And the Time-ReDesigned system feels better to work in. It is not chaotic; flow is much smoother; and it is busy yet relaxed and even fun.  The same activity is achieved by the same people doing the same work in the same sequence. Only the Time-Design has changed. A change that delivered a win for the workers!

What was the impact of this cost-saving improvement on the customers of this service? They can now be 98% confident that they will get their task completed correctly in less than 120 minutes.  Before the Time-Redesign the 98% confidence limit was 470 minutes! So this is a win for the customers too!

And the Time-ReDesigned system is less expensive so it is a win for whoever is paying.

Same safety and quality, quicker with less variation, and at lower cost. Win-Win-Win.

And the usual reaction to playing the Time-ReDesign Game is incredulous disbelief.  Some describe it as a “light bulb” moment when they see how the diagnosis of the carve-out time-design is made and and how the Time-ReDesign is done. They say “If I had not seen it with my own eyes I would not have believed it.” And they say “The solutions are simple but not obvious!” And they say “I wish I had learned this years ago!”  And thay apologise for being so skeptical before.

And there are those who are too complacent, too careful or too cynical to play the Time-ReDesign Game (which is about 80% of people actually) – and who deny themselves the opportunity of a win-win-win outcome. And that is their choice. They can continue to grin and bear it – for a while longer.     

And for the 20% who want to learn how to do Time ReDesign for real in their actual systems there is now a Ray Of Hope.

And the Ray of Hope is illuminating a signpost on which is written “This Way to Improvementology“. 

Quality First or Time First?

Before we explore this question we need to establish something. If the issue is Safety then that always goes First – and by safety we mean “a risk of harm that everyone agrees is unacceptable”.


figure_running_hamster_wheel_150_wht_4308Many Improvement Zealots state dogmatically that the only way reach the Nirvanah of “Right Thing – On Time – On Budget” is to focus on Quality First.

This is incorrect.  And what makes it incorrect is the word only.

Experience teaches us that it is impossible to divert people to focus on quality when everyone is too busy just keeping afloat. If they stop to do something else then they will drown. And they know it.

The critical word here is busy.

‘Busy’ means that everyone is spending all their time doing stuff – important stuff – the work, the checking, the correcting, the expediting, the problem solving, and the fire-fighting. They are all busy all of the time.

So when a Quality Zealot breezes in and proclaims ‘You should always focus on quality first … that will solve all the problems’ then the reaction they get is predictable. The weary workers listen with their arms-crossed, roll-their eyes, exchange knowing glances, sigh, shrug, shake their heads, grit their teeth, and trudge back to fire-fighting. Their scepticism and cynicism has been cut a notch deeper. And the weary workers get labelled as ‘Not Interested In Quality’ and ‘Resisting Change’  and ‘Laggards’ by the Quality Zealot who has spent more time studying and regurgitating rhetoric than investing time in observing and understanding reality.

The problem here is the seemingly innocuous word ‘always’. It is too absolute. Too black-and-white. Too dogmatic. Too simple.

Sometimes focussing on Quality First is a wise decision. And that situation is when there is low-quality and idle-time. There is some spare capacity to re-invest in understanding the root causes of the quality issues,  in designing them out of the process, and in implementing the design changes.

But when everyone is busy – when there is no idle-time – then focussing on quality first is not a wise decision because it can actually make the problem worse!

[The Quality Zealots will now be turning a strange red colour, steam will be erupting from their ears and sparks will be coming from their finger-tips as they reach for their keyboards to silence the heretical anti-quality lunatic. “Burn, burn, burn” they rant]. 

When everyone is busy then the first thing to focus on is Time.

And because everyone is busy then the person doing the Focus-on-Time stuff must be someone else. Someone like an Improvementologist.  The Quality Zealot is a liability at this stage – but they become an asset later when the chaos has calmed.

And what our Improvementologist is looking for are queues – also known as Work-in-Progress or WIP.

Why WIP?  Why not where the work is happening? Why not focus on resource utilisation? Isn’t that a time metric?

Yes, resource utilisation is a time-related metric but because everyone is busy then resource utilisation will be high. So looking at utilisation will only confirm what we already know.  And everyone is busy doing important stuff – they are not stupid – they are busy and they are doing their best given the constraints of their process design.        

The queue is where an Improvementologist will direct attention first.  And the specific focus of their attention is the cause of the queue.

This is because there is only one cause of a queue: a mismatch-over-time between demand and activity.

So, the critical first step to diagnosing the cause of a queue is to make the flow visible – to plot the time-series charts of demand, activity and WIP.  Until that is done then no progress will be made with understanding what is happening and it wil be impossible to decide what to do. We need a diagnosis before we can treat. And to get a diagnosis we need data from an examination of our process; and we need data on the history of how it has developed. And we need to know how to convert that data into information, and then into understanding, and then into design options, and then into a wise decision, and then into action, and then into improvement.

And we now know how to spot an experienced Improvementologist because the first thing they will look for are the Queues not the Quality.

But why bother with the flow and the queues at all? Customers are not interested in them! If time is the focus then surely it is turnaround times and waiting times that we need to measure! Then we can compare our performance with our ‘target’ and if it is out of range we can then apply the necessary ‘pressure’!

This is indeed what we observe. So let us explore the pros and cons of this approach with an example.

We are the manager of a support department that receives requests, processes them and delivers the output back to the sender. We could be one of many support departments in an organisation:  human resources, procurement, supplies, finance, IT, estates and so on. We are the Backroom Brigade. We are the unsung heros and heroines.

The requests for our service come in different flavours – some are easy to deal with, others are more complex.  They also come with different priorities – urgent, soon and routine. And they arrive as a mixture of dribbles and deluges.  Our job is to deliver high quality work (i.e. no errors) within the delivery time expected by the originator of the request (i.e. on time). If  we do that then we do not get complaints (but we do not get compliments either).

From the outside things look mostly OK.  We deliver mostly on quality and mostly on time. But on the inside our department is in chaos! Every day brings a new fire to fight. Everyone is busy and the pressure and chaos are relentless. We are keeping our head above water – but only just.  We do not enjoy our work-life. It is not fun. Our people are miserable too. Some leave – others complain – others just come to work, do stuff, take the money and go home – like Zombies. They comply.

three_wins_agreementOnce in the past we were were seduced by the sweet talk of a Quality Zealot. We were promised Nirvanah. We were advised to look at the quality of the requests that we get. And this suggestion resonated with us because we were very aware that the requests were of variable quality. Our people had to spend time checking-and-correcting them before we could process them.  The extra checking had improved the quality of what we deliver – but it had increased our costs too. So the Quality Zealot told us we should work more closely with our customers and to ‘swim upstream’ to prevent the quality problems getting to us in the first place. So we sent some of our most experienced and most expensive Inspectors to paddle upstream. But our customers were also very busy and, much as they would have liked, they did not have time to focus on quality either. So our Inspectors started doing the checking-and-correcting for our customers. Our people are now working for our customers but we still pay their wages. And we do not have enough Inspectors to check-and-correct all the requests at source so we still need to keep a skeleton crew of Inspectors in the department. And these stay-at-home Inspectors  are stretched too thin and their job is too pressured and too stressful. So no one wants to do it.And given the choice they would all rather paddle out to the customers first thing in the morning to give them as much time as possible to check-and-correct the requests so the days work can be completed on time.  It all sounds perfectly logical and rational – but it does not seem to have worked as promised. The stay-at-home Inspectors can only keep up with the more urgent work,  delivery of the less urgent work suffers and the chronic chaos and fire-fighting are now aggravated by a stream of interruptions from customers asking when their ‘non-urgent’ requests will be completed.

figure_talk_giant_phone_anim_150_wht_6767The Quality Zealot insisted we should always answer the phone to our customers – so we take the calls – we expedite the requests – we solve the problems – and we fight-the-fire.  Day, after day, after day.

We now know what Purgatory means. Retirement with a pension or voluntary redundancy with a package are looking more attractive – if only we can keep going long enough.

And the last thing we need is more external inspection, more targets, and more expensive Quality Zealots telling us what to do! 

And when we go and look we see a workplace that appears just as chaotic and stressful and angry as we feel. There are heaps of work in progress everywhere – the phone is always ringing – and our people are running around like headless chickens, expediting, fire-fighting and getting burned-out: physically and emotionally. And we feel powerless to stop it. So we hide.

Does this fictional fiasco feel familiar? It is called the Miserable Job Purgatory Vortex.

Now we know the characteristic pattern of symptoms and signs:  constant pressure of work, ever present threat of quality failure, everyone busy, just managing to cope, target-stick-and-carrot management, a miserable job, and demotivated people.

The issue here is that the queues are causing some of the low quality. It is not always low quality that causes all of the queues.

figure_juggling_time_150_wht_4437Queues create delays, which generate interruptions, which force investigation, which generates expediting, which takes time from doing the work, which consumes required capacity, which reduces activity, which increases the demand-activity mismatch, which increases the queue, which increases the delay – and so on. It is a vicious circle. And interruptions are a fertile source of internally generated errors which generates even more checking and correcting which uses up even more required capacity which makes the queues grow even faster and longer. Round and round.  The cries for ‘we need more capacity’ get louder. It is all hands to the pump – but even then eventually there is a crisis. A big mistake happens. Then Senior Management get named-blamed-and shamed,  money magically appears and is thrown at the problem, capacity increases,  the symptoms settle, the cries for more capacity go quiet – but productivity has dropped another notch. Eventually the financial crunch arrives.    

One symptom of this ‘reactive fire-fight design’ is that people get used to working late to catch up at the end of the day so that the next day they can start the whole rollercoaster ride again. And again. And again. At least that is a form of stability. We can expect tomorrow to be just a s miserable as today and yesterday and the day before that. But TOIL (Time Off In Lieu) costs money.

The way out of the Miserable Job Purgatory Vortex is to diagnose what is causing the queue – and to treat that first.

And that means focussing on Time first – and that means Focussing on Flow first.  And by doing that we will improve delivery, improve quality and improve cost because chaotic systems generate errors which need checking and correcting which costs more. Time first is a win-win-win strategy too.

And we already have everything we need to start. We can easily count what comes in and when and what goes out and when.

The first step is to plot the inflow over time (the demand), the outflow over time (the activity), and from that we work out and plot the Work-in-Progress over time. With these three charts we can start the diagnostic process and by that path we can calm the chaos.

And then we can set to work on the Quality Improvement.  


13/01/2013Newspapers report that 17 hospitals are “dangerously understaffed”  Sound familiar?

Next week we will explore how to diagnose the root cause of a queue using Time charts.

For an example to explore please play the SystemFlow Game by clicking here

 

The Management of Victimosis

erasable_sad_face_150_wht_6089One of the commonest psycho-socio-economic diseases is Victimosis.

This disease has a characteristic set of symptoms and signs. The symptoms are easy to detect – and the easiest way is to close your eyes and listen to the language being used. There is a characteristic vocabulary.  ‘Yes but’ is common as is ‘If only’ and ‘They should’ and ‘Not my’ and ‘Too busy’.  Hearing these phrases used frequently is good evidence that the subject is suffering from Victimosis.

Everyone suffers from Acute Victimosis occasionally, especially if they are tired and suffer a series of emotional set backs.  With the support of relatives and friends our psychoimmune system is able to combat the cause and return us to healthy normality. We are normally able to heal our emotional wounds.

Unfortunately Victimosis is an infectious and highly contagious condition and with a large enough innoculum it can spread until almost everyone in the organisation is affected to some degree.  When this happens the Victimosis behaviour can become the norm and awareness of the symptoms slips from consciousness. Victimosis then becomes the unspoken dominant culture and the transition to the Chronic Victimosis phase is complete.

dna_magnifying_glass_150_wht_8959Research has shown that Victimosis is an acquired disease linked to a transmissable meme that is picked up early in life. The meme can be transmitted person-to-person and also through mass communication systems which then leads to rapid dissemination. Typical channels are newspapers, television, the internet and now social media.  Just sample the daily news and observe how much Victimosis language is in circulation.

Those more susceptible to infection can develop into chronic carriers who constantly infect and reinfect others.  The outward mainfestations of the chronic form are incessant complaining, criticising, irrational decisions, ineffective actions, blaming and eventually depression, hopelessness and terminal despair.  The chronically infected may aggregate into like-minded groups as a safety-in-numbers reflex response.  These groups are characterised  by having a high proportion of people with the same temperament; particularly the Guardian preference (the Supervisors, Inspectors, Providers and Protectors who make up two thirds of the population).

Those able to resist infection find the context and culture toxic and they take action. They leave.

The outward manifestations of Chronic Victimosis are GroupThink and Silosis.  GroupThink is where collectives start to behave as one and their group-rhetoric becomes progressively less varied and more dogmatic. Silosis is a form of organisational tribalism where Departments become separated from each other, conceptually, emotionally, physically and financially. Both natural reactions only aggravate the condition and accelerate the decline.

patient_stumbling_with_bandages_150_wht_6861One of the effects of the Victimosis-meme is Agnostic Hyper-Reactivity. This is where both the Individuals and their Silos develop a thick emotional protective membrane that distorts their perception.  It is not that they do not sense what is happening – it is that they do not perceive it or that they perceive it in a distorted way.  This is the Agnosia part – literally ‘not knowing’.

Unfortunately being ignorant of Reality does not help and eventually the pressure of Reality builds up and punches a hole through the emotional barrier.  Something exceptionally bad happens that cannot be discounted or ignored. This is the ‘crisis‘ stage and it elicits a characteristic reflex reaction. An emotional knee-jerk. Unfortunately the reflex is an over-reaction and is poorly focussed and badly coordinated – so it does more harm than good.

This is the hyper-reactivity part.

The blind reflex reaction further destabilises an already unstable situation and accelerates the decline.  It creates a positive feedback loop that can quickly escalate to verbal, written and then psychological and physical conflict. The Lose-Lose-Lose of Self-Destructive behaviour that is characteristic of the late phase.  And that is not all.  Over time the reflex reaction gets less effective as the Victimosis Membrane thickens. The reflex fades out.  This is a dangerous development because on the surface it looks like things are improving, there is less conflict, but in reality the patient is slipping into pre-terminal Victimosis.

Fortunately there is a treatment for Victimosis.

It is called Positivicillin.

herbal_supplement_400_wht_8492This is not a new wonder drug, it is a natural product. We all produce Positivicillin and some of us produce more than others: they are called Optimists.  Positivicillin works by channelling the flow of emotional energy into the reflection-and-action pathways. Naturally occurring Positivicillin has a long-half life: the warm glow of success lasts a long time.  Unfortunately Positivicillin is irreversibly deactivated by the emotional toxin generated by the Victimosis meme: a toxin called Discountin. So in the presence of Discountin the affected person needs to generate more Positivicillin and to do so continuously and this leads to emotional exhaustion. The diffusion of Positivicillin is impeded by the Victimosis Membrane so if subject has a severe case of Chronic Victimosis then they may need extrinsic Positivicillin treatment at high dose and for a long time to prevent terminal decline. The primary goal of emergency treatment is to neutralise the excess Discountin for long enough that the natural production of Positivicillin can start to work.

So where can we get supplies of extrinsic Positivicillin from?

In its pure form Positivicillin is rare and expensive.  The number of naturally occurring Eternal Optimist Exporters is small and their collective Positivicillin production capability is limited. Healthy organisations value and attract them; unhealthy ones discount and reject them.

wine_toast_pc_400_wht_4449no_smoking_400_wht_6805So we are forced to resort to using more abundant, cheaper but inferior drugs.  One is called Alcoholimycin and another is Tobaccomycin.  They are both widely available and affordable but they have long term irreversible toxic side effects.

Chronic Victimosis is endemic so chronic abuse of Tobaccomycin and Alcoholimycin is common and, in an attempt to restrict their negative long term effects, both drugs are heavily taxed by the Authorities.

Unfortunately this only aggravates the spread of Chronic Victimosis which some report is a sign of the same condition affecting the Authorties! These radicals are calling for de-regulation of the more potent variants such a Cannabisimycin but the Authorities have opted for a tightly regulated supply of symptom-suppressants such as Anxiolytin and Antidepressin. These are now freely available and do help those who want to learn to cure themselves.

The long term goal of the Victimosis Research Council is to develop ways to produce pure Positivicillin and to treat the most severe cases of Chronic Victimosis; and to find ways to boost the natural production of Positivicillin within less seriously affected individuals and organisations.


Chronic Victimosis is not a new disease – it has been described in various forms throughout recorded history – so the search for a cure starts with the historical treatments – one of which is Confessmycin. This has been used for centuries and appears to work well for some but not others and this idiosyncratic response is believed to be due to the presence (or not) of the Rel-1-Gion meme. Active dissemination of a range of Rel-1-Gion meme variants (and the closely linked Pol-1-Tic meme variants) has been tried with considerable success but does not appear to be a viable long term option.

A recent high-tech approach is called a Twimplant.  This is an example of the Social-Media class of biopsychosocial feedback loops that uses the now ubiquitous mobiphonic symbiont to connect the individual to a regular supply of positive support, ideas and evidence called P-Tweets.  It is important to tune the Twimplant correctly because the same device can also pick up distress signals broadcast by sufferers of Chronic Victimosis who are attempting to dilute their Discountin by digitising it and exporting it to everyone else. These are called N-Tweets and are easily identifiable by their Victimosis vocabulary. N-tweets can be avoided by adopting an Unfollow policy.

heart_puzzle_piece_missing_pa_150_wht_4829One promising line of new research is called R2LM probe therapy.  This is an unconventional and innovative way of curing Chronic Victimosis. The R2LM probe is designed to identify the gaps in the organisational memetic code and to guide delivery of specific meme transplants that fill the gaps it reveals. One common gap is called the OM-meme deletion and one effective treatment for this is called FISH. Taking a course of FISH injections or using a FISH immersion technique leads to a rapid and sustained improvement in emotional balance.  That in-turn leads to an increase in the natural production of Positivicillin. From that point on the individual and can dissolve the Victimosis Membrance and correct their perceptual distortion. The treatment is sometimes uncomfortable but those who completed the course will vouch for its effectiveness.

For the milder forms of Victimosis it is possible to self-diagnose and to self-treat.

The strategy here is to actively reduce the production of Discountin and to boost the natural production of Positivicillin. These have a synergistic effect. The first step is to practice listening for the Victimosis vocabulary using a list of common phrases.  The patient is taught to listen for these in spoken communication and to look for them in written communication. Spoken communication includes their Internal Voice. The commonest phrases are:

1. “Yes but …”
2. “If only  …”
3. “I/You/We/They should …”
4. “I/We can’t …”
5. “I/We hope …”
6. “Not My/Our fault …”
7. “Constant struggle …”
8. “I/We do not know …”
9. “I am too busy to …”

The negative emotional impact of these phrases is caused by the presence of the Discountin toxin.

The second step is to substitute the contaminated phrase with an equivalent one where the Discountin is deactivated using Positivicillin. This deliberate and conscious substitution is easiest in written communication, then externally spoken and finally the Internal Voice. The replacements for the above are …

1. “Yes, and …”
2. “Next time …”
3. “I/We could …”
4. “I/We can …”
5. “I/We know …”
6. “My/Our responsibility …”
7. “Endless opportunity …”
8. “I/We will learn …”
9. “It is too important not to …”

figure_check_mark_celebrate_anim_150_wht_3617The system-wide benefits of the prompt and effective management of Chronic Victimosis are enormous. There is more reflective consideration and more effective action. There is success and celebration where before there was failure and frustration. The success stimulates natural release of more Positivicillin which builds a positive reinforcement feedback loop.  In addition the other GA-memes become progressively switched off and the signs of Passive Persecutitis and Reactive Rescuopathy resolve.

The combined effect leads to the release of Curiositonin, the natural inquisitiveness hormone, and Excitaline – the hormone that causes the addictive feeling of eager anticipation. The racing heart and the dry mouth.

From then on the ex-patient is able to maintain their emotional balance, to further develop their emotional resilience, and to assist other sufferers.  And that is a win for everyone.

Defusing Trust Eroders – Part II

line_figure_phone_400_wht_9858<Ring Ring><Ring Ring>

B: Hello Leslie. How are you today?

L: Hi Bob – I am OK.  Thank you for your time today.  Is 15 minutes going to be enough?

B: Yes. There is evidence that the ideal chunk of time for effective learning is around 15 minutes.

L: OK.  I said I would read the material you sent me and reflect on it.

B: Yes.  Can you retell your Nerve Curve experience as a storyboard and highlight your ‘ah ha’ moments?

L: OK.  And that was the first ‘ah ha’.  I found the storyboard format a really effective way to capture my sequence of emotional states.

campfire_burning_150_wht_174B: Yes.  There are close links between stories, communication, learning and improvement.  Before we learned to write we used campfire stories to pass collective knowledge from generation to generation.   It is an ancient, in-built skill we all have and we all enjoy a good story.

L: Yes.  My first reaction was to the way you described the Victim role.  It really resonated with how I was feeling and how I was part of the dynamic.  You were spot on with the feelings that dominated my thinking – anxiety and fear. The big ‘ah ha’ for me was to understand the discount that I was making.  Not of others – of myself.

B: OK.  What was the image that you sketched on your storyboard?

L: I am embarrased to say – you will think I am silly.

B: I will not think you are silly.

employee_diciplined_400_wht_5635I know.  And I knew that as soon as I said it.  I think I was actually saying it to myself – or part of myself.  Like I was trying to appease part of myself.  Anyway, the picture I sketched was me as a small child at school standing with my head down, hands by my sides, and being told off in front of the whole class for getting a sum wrong.  I was crying.  I was not very good at maths and even now my mind sort of freezes and I get tears in my eyes and feel scared whenever someone tries to explain something using equations!  I can feel the terror starting to well up just talking about it.

B: OK. No need to panic. Take a long breath and exhale slowly.  The story you have told is very common.  Many of our fears of failure originate from early memories of experiencing ‘education by humiliation’.  It is a blunt and ineffective motivational tool that causes untold and long lasting damage.  It is a symptom of a low quality education system design. Education is an exercise in improvement of knowledge, understanding, capability and confidence.  The unintended outcome of this clumsy teaching tactic is a belief that we cannot solve problems ourselves and it is that invalid belief that creates the self-fulfilling prophecy of repeated failure.

L: Yes! And I know I can solve maths problems – I do it all the time – and I help my children with their maths homework.  So, it is not the maths that is triggering my fear.  What is it?

B: The answer to your question will become clear.  What is the next picture on your storyboard?

emotion_head_mad_400_wht_7632The next picture was of the teacher who was telling me off.  Or rather the face of the teacher.  It was a face of frustration and anger.  I drew a thought bubble and wrote in it “This small, irritating child cannot solve even a simple maths problem and is slowing down the whole lesson by bursting into tears everytime they get stuck.  I blame the parents who are clearly too soft.  They all need to learn some discipline – the hard way.

L: Does this shed any light on your question?

B: Wow!  Yes!  It is not the maths that I am reacting to – it is the behaviour of the teacher.  I am scared of the behaviour.  I feel powerless.  They are the teacher, I am just a small, incompetent, stupid, blubbing child.  They do not care that I do not understand the question, and that I am in distress, and that I am scared that I will be embarassed in front of the whole class, and that I am scared that my parents will see a bad mark on my school report.  And I feel trapped.  I need to rationalise this.  To make sense of it.  Maybe I am stupid?  That would explain why I cannot solve the mths problem.  Maybe I should just give in and accept that I am a failure and too stupid to do maths?

There was a pause.  Then Leslie continued in a different tone.  A more determined tone.

L: But I am not a failure.  This is just my knee jerk habitual reaction to an authority figure displaying anger towards me.  I can decide how I react.  I have complete control over that.  I can disconnect the behaviour I experience and my reaction to it.  I can choose.  Wow!

B: OK. How are you feeling right now?  Can you describe it using a visual metaphor?

ready_to_launch_PA_150_wht_5052L: Um – weird.  Mixed feelings.  I am picturing myself sitting on a giant catapault.  The ends of the huge elastic bands are anchored in the present and I am sitting in the loop but it is stretched way back into the past.  There is something formless in the past that has been holding me back and the tension has been slowly building over time.  And it feels that I have just cut that tie to the past, and I am free, and I am now being accelerated into the future.  I did that.  I am in control of my own destiny and it suddenly feels fun and exciting.

B: OK. How do you feel right now about the memory of the authority figure from the past?

L: OK actually.  That is really weird.  I thought that I would feel angry but I do not.  I just feel free.  It was not them that was the problem.  Their behaviour was not my fault – and it was my reaction to their behaviour that was the issue.  My habitual behaviour.  No, wait a second. Our habitual behaviour.  It is a dynamic.  It takes both people to play the game.

There was a pause.  Leslie sensed that Bob knew that some time was needed to let the emotions settle a bit.

B: Are you OK to continue with your storyboard?

emotion_head_sad_frown_400_wht_7644L: Yes.  The next picture is of the faces of my parents.  They are looking at my school report.  They look sad and are saying “We always dreamed that Leslie would be a doctor or something like that.  I suppose we will have to settle for something less ambitious.  Do not worry Leslie, it is not your fault, it will be OK, we will help you.”  I felt like I had let them down and I had shattered their dream.  I felt so ashamed.  They had given me everything I had ever asked for.  I also felt angry with myself and with them.  And that is when I started beating myself up.  I no longer needed anyone else to do that!  I could persecute myself.  I could play both parts of the game in my own head.  That is what I did just now when it felt like I was talking to myself.

B: OK.  You have now outlined the three roles that together create the dynamic for a stable system of learned behaviour.  A system that is very resistant to change.  It is like a triangular role-playing-game.  We pass the role-hats as we swap places in the triangle and we do it in collusion with others and ourselves and we do it unconsciously.  The purpose of the game is to create opportunities for social interaction – which we need and crave – the process has a clear purpose.  The unintended outcome of this design is that it generates bad feelings, it erodes trust and it blocks personal and organisational development and improvement.  We get stuck in it – rather like a small boat in a whirlpool.  And we cannot see that we are stuck in it.  We just feel bad as we spin around in an emotional maelstrom.  And we feel cheated out of something better but we do not know what it is and how to get it.

There was a long pause.  Leslie’s mind was racing.  The world had just changed.  The pieces had been blown apart and were now re-assembling in a different configuration.  A simpler, clearer and more elegant design.

L: So, tell me if I have this right.  Each of the three roles involves a different discount?

B: Yes.

And each discount requires a different – um – tactic to defuse?

B: Yes.

So, the way to break out of this trust eroding behavioural hamster-wheel is to learn to recognise which role we are in and to consciously deploy the discount defusing tactic.

B: Yes.

And by doing that enough times we learn how to spot the traps that other people are creating and avoid getting sucked into them.

B: Yes. And we also avoid starting them ourselves.

L: Of course! And by doing that we develop growing respect for ourselves and for each other and a growing level of trust in ourselves and in others?  We have started to defuse the trust eroding behaviour and that lowers the barrier to personal and organisational development and improvement.

B: Yes.

L: So what are the three discount defusing tactics?

There was a pause.  Leslie knew what was coming next.  It would be a question.

B: What role are you in now?

L: Oh!  Yes.  I see.  I am still feeling like that small school child at school but now I am asking for the answer and I am discounting myself by assuming that I cannot solve this problem myself.  I am assuming that I need you to rescue me by telling me the answer.  I am still in the trust eroding game, I do not trust myself and I am inviting you to play too, and to reinforce my belief that I cannot solve the problem.

B: And do you need me to tell you the answer?

L: No.  I can probably work this out myself.  And if I do get stuck then I can ask for hints or nudges – not for the answer.  I need to do the learning work and I want to do it.

B: OK.  I will commit to hinting and nudging if asked, and if I do not know the answer I will say so.

L: Phew!  That was definitely an emotional rollercoaster ride on the Nerve Curve.  Looking back it all makes complete sense and I now know what to do – but at the start it felt like I was heading into the Dark Unknown.  You are right.  It is liberating and exhilarating!

B: That feeling of clarity-of-hindsight and exhilaration from learning is what we always strive for.  Both as teachers and students.

L: You mean it is the same for you?  You are still riding the Nerve Curve?  Still feeling surprised, confused, scared, resolved, enlightened then delighted?

B: Ha ha!  Yes.  Every day.  It is fun.  I believe that there is No Limit to Learning so there is an inexhaustible Font of Fun.

L: Wow! I am off to have more Fun from Learning. Thank you so much yet again.

two_stickmen_shaking_hands_puzzle_150_wht_5229B: Thank you Leslie.


The Six Dice Game

<Ring Ring><Ring Ring>

Hello, you are through to the Improvement Science Helpline. How can we help?

This is Leslie, one of your apprentices.  Could I speak to Bob – my Improvement Science coach?

Yes, Bob is free. I will connect you now.

<Ring Ring><Ring Ring>

B: Hello Leslie, Bob here. What is on your mind?

L: Hi Bob, I have a problem that I do not feel my Foundation training has equipped me to solve. Can I talk it through with you?

B: Of course. Can you outline the context for me?

L: OK. The context is a department that is delivering an acceptable quality-of-service and is delivering on-time but is failing financially. As you know we are all being forced to adopt austerity measures and I am concerned that if their budget is cut then they will fail on delivery and may start cutting corners and then fail on quality too.  We need a win-win-win outcome and I do not know where to start with this one.

B: OK – are you using the 6M Design method?

L: Yes – of course!

B: OK – have you done The 4N Chart for the customer of their service?

L: Yes – it was their customers who asked me if I could help and that is what I used to get the context.

B: OK – have you done The 4N Chart for the department?

L: Yes. And that is where my major concerns come from. They feel under extreme pressure; they feel they are working flat out just to maintain the current level of quality and on-time delivery; they feel undervalued and frustrated that their requests for more resources are refused; they feel demoralized; demotivated and scared that their service may be ‘outsourced’. On the positive side they feel that they work well as a team and are willing to learn. I do not know what to do next.

B: OK. Dispair not. This sounds like a very common and treatable system illness.  It is a stream design problem which may be the reason your Foundations training feels insufficient. Would you like to see how a Practitioner would approach this?

L: Yes please!

B: OK. Have you mapped their internal process?

L: Yes. It is a six-step process for each job. Each step has different requirements and are done by different people with different skills. In the past they had a problem with poor service quality so extra safety and quality checks were imposed by the Governance department.  Now the quality of each step is measured on a 1-6 scale and the quality of the whole process is the sum of the individual steps so is measured on a scale of 6 to 36. They now have been given a minimum quality target of 21 to achieve for every job. How they achieve that is not specified – it was left up to them.

B: OK – do they record their quality measurement data?

L: Yes – I have their report.

B: OK – how is the information presented?

L: As an average for the previous month which is reported up to the Quality Performance Committee.

B: OK – what was the average for last month?

L: Their results were 24 – so they do not have an issue delivering the required quality. The problem is the costs they are incurring and they are being labelled by others as ‘inefficient’. Especially the departments who are in budget and they are annoyed that this failing department keeps getting ‘bailed out’.

B: OK. One issue here is the quality reporting process is not alerting you to the real issue. It sounds from what you say that you have fallen into the Flaw of Averages trap.

L: I don’t understand. What is the Flaw of Averages trap?

B: The answer to your question will become clear. The finance issue is a symptom – an effect – it is unlikely to be the cause. When did this finance issue appear?

L: Just after the Safety and Quality Review. They needed to employ more agency staff to do the extra work created by having to meet the new Minimum Quality target.

B: OK. I need to ask you a personal question. Do you believe that improving quality always costs more?

L: I have to say that I am coming to that conclusion. Our Governance and Finance departments are always arguing about it. Governance state ‘a minimum standard of safety and quality is not optional’ and finance say ‘but we are going out of business’. They are at loggerheads. The service departments get caught in the cross-fire.

B: OK. We will need to use reality to demonstrate that this belief is incorrect. Rhetoric alone does not work. If it did then we would not be having this conversation. Do you have the raw data from which the averages are calculated?

L: Yes. We have the data. The quality inspectors are very thorough!

B: OK – can you plot the quality scores for the last fifty jobs as a BaseLine chart?

L: Yes – give me a second. The average is 24 as I said.

B: OK – is the process stable?

L: Yes – there is only one flag for the fifty. I know from my Foundations training that is not a cause for alarm.

B: OK – what is the process capability?

L: I am sorry – I don’t know what you mean by that?

B: My apologies. I forgot that you have not completed the Practitioner training yet. The capability is the range between the red lines on the chart.

L: Um – the lower line is at 17 and the upper line is at 31.

L: OK – how many points lie below the target of 21.

B: None of course. They are meeting their Minimum Quality target. The issue is not quality – it is money.

There was a pause.  Leslie knew from experience that when Bob paused there was a surprise coming.

B: Can you email me your chart?

A cold-shiver went down Leslie’s back. What was the problem here? Bob had never asked to see the data before.

Sure. I will send it now.  The recent fifty is on the right, the data on the left is from after the quality inspectors went in and before the the Minimum Quality target was imposed. This is the chart that Governance has been using as evidence to justify their existence because they are claiming the credit for improving the quality.

B: OK – thanks. I have got it – let me see.  Oh dear.

Leslie was shocked. She had never heard Bob use language like ‘Oh dear’.

There was another pause.

B: Leslie, what is the context for this data? What does the X-axis represent?

Leslie looked at the chart again – more closely this time. Then she saw what Bob was getting at. There were fifty points in the first group, and about the same number in the second group. That was not the interesting part. In the first group the X-axis went up to 50 in regular steps of five; in the second group it went from 50 to just over 149 and was no longer regularly spaced. Eventually she replied.

Bob, that is a really good question. My guess it is that this is the quality of the completed work.

B: It is unwise to guess. It is better to go and see reality.

You are right. I knew that. It is drummed into us during the Foundations training! I will go and ask. Can I call you back?

B: Of course. I will email you my direct number.


<Ring Ring><Ring Ring>

B: Hello, Bob here.

L: Bob – it is Leslie. I am  so excited! I have discovered something amazing.

B: Hello Leslie. That is good to hear. Can you tell me what you have discovered?

L: I have discovered that better quality does not always cost more.

B: That is a good discovery. Can you prove it with data?

L: Yes I can!  I am emailing you the chart now.

B: OK – I am looking at your chart. Can you explain to me what you have discovered?

L: Yes. When I went to see for myself I saw that when a job failed the Minimum Quality check at the end then the whole job had to be re-done because there was no time to investigate and correct the causes of the failure.  The people doing the work said that they were helpless victims of errors that were made upstream of them – and they could not predict from one job to the next what the error would be. They said it felt like quality was a lottery and that they were just firefighting all the time. They knew that just repeating the work was not solving the problem but they had no other choice because they were under enormous pressure to deliver on-time as well. The only solution they could see is was to get more resources but their requests were being refused by Finance on the grounds that there is no more money. They felt completely trapped.

B: OK. Can you describe what you did?

L: Yes. I saw immediately that there were so many sources of errors that it would be impossible for me to tackle them all. So I used the tool that I had learned in the Foundations training: the Niggle-o-Gram. That focussed us and led to a surprisingly simple, quick, zero-cost process design change. We deliberately did not remove the Inspection-and-Correction policy because we needed to know what the impact of the change would be. Oh, and we did one other thing that challenged the current methods. We plotted every attempt, both the successes and the failures, on the BaseLine chart so we could see both the the quality and the work done on one chart.  And we updated the chart every day and posted it chart on the notice board so everyone in the department could see the effect of the change that they had designed. It worked like magic! They have already slashed their agency staff costs, the whole department feels calmer and they are still delivering on-time. And best of all they now feel that they have the energy and time to start looking at the next niggle. Thank you so much! Now I see how the tools and techniques I learned in Foundations are so powerful and now I understand better the reason we learned them first.

B: Well done Leslie. You have taken an important step to becoming a fully fledged Practitioner. You have learned some critical lessons in this challenge.


This scenario is fictional but realistic.

And it has been designed so that it can be replicated easily using a simple game that requires only pencil, paper and some dice.

If you do not have some dice handy then you can use this little program that simulates rolling six dice.

The Six Digital Dice program (for PC only).

Instructions
1. Prepare a piece of A4 squared paper with the Y-axis marked from zero to 40 and the X-axis from 1 to 80.
2. Roll six dice and record the score on each (or roll one die six times) – then calculate the total.
3. Plot the total on your graph. Left-to-right in time order. Link the dots with lines.
4. After 25 dots look at the chart. It should resemble the leftmost data in the charts above.
5. Now draw a horizontal line at 21. This is the Minimum Quality Target.
6. Keep rolling the dice – six per cycle, adding the totals to the right of your previous data.

But this time if the total is less than 21 then repeat the cycle of six dice rolls until the score is 21 or more. Record on your chart the output of all the cycles – not just the acceptable ones.

7. Keep going until you have 25 acceptable outcomes. As long as it takes.

Now count how many cycles you needed to complete in order to get 25 acceptable outcomes.  You should find that it is about twice as many as before you “imposed” the Inspect-and-Correct QI policy.

This illustrates the problem of an Inspection-and-Correction design for quality improvement.  It does improve the quality of the final output – but at a higher cost.

We are treating the symptoms (effects) and ignoring the disease (causes).

The internal design of the process is unchanged so it is still generating mistakes.

How much quality improvement you get and how much it costs you is determined by the design of the underlying process – which has not changed. There is a Law of Diminishing returns here – and a big risk.

The risk is that if quality improves as the result of applying a quality target then it encourages the Governance thumbscrews to be tightened further and forces those delivering the service further into cross-fire between Governance and Finance.

The other negative consequence of the Inspect-and-Correct approach is that it increases both the average and the variation in lead time which also fuels the calls for more targets, more sticks, calls for  more resources and pushes costs up even further.

The lesson from this simple exercise seems clear.

The better strategy for improving quality is to design the root causes of errors out of the processes  because then we will get improved quality and improved delivery and improved productivity and we will discover that we have improved safety as well.  Win-win-win-win.

The Six Dice Game is a simpler version of the famous Red Bead Game that W Edwards Deming used to explain why, in the modern world, the arbitrary-target-driven-command-and-control-stick-and-carrot style of performance management creates more problems than it solves.

The illusion is of short-term gain but the reality is of long-term pain.

And if you would like to see and hear Deming talking about the science of improvement there is a video of him speaking in 1984. He is at the bottom of the page.  Click here.

The Three R’s

Processes are like people – they get poorly – sometimes very poorly.

Poorly processes present with symptoms. Symptoms such as criticism, complaints, and even catastrophes.

Poorly processes show signs. Signs such as fear, queues and deficits.

So when a process gets very poorly what do we do?

We follow the Three R’s

1-Resuscitate
2-Review
3-Repair

Resuscitate means to stabilize the process so that it is not getting sicker.

Review means to quickly and accurately diagnose the root cause of the process sickness.

Repair means to make changes that will return the process to a healthy and stable state.

So the concept of ‘stability’ is fundamental and we need to understand what that means in practice.

Stability means ‘predictable within limits’. It is not the same as ‘constant’. Constant is stable but stable is not necessarily constant.

Predictable implies time – so any measure of process health must be presented as time-series data.

We are now getting close to a working definition of stability: “a useful metric of system performance that is predictable within limits over time”.

So what is a ‘useful metric’?

There will be at least three useful metrics for every system: a quality metric, a time metric and a money metric.

Quality is subjective. Money is objective. Time is both.

Time is the one to start with – because it is the easiest to measure.

And if we treat our system as a ‘black box’ then from the outside there are three inter-dependent time-related metrics. These are external process metrics (EPMs) – sometimes called Key Performance Indicators (KPIs).

Flow in – also called demand
Flow out – also called activity
Delivery time – which is the time a task spends inside our system – also called the lead time.

But this is all starting to sound like rather dry, conceptual, academic mumbo-jumbo … so let us add a bit of realism and drama – let us tell this as a story …

[reveal heading=”Click here to reveal the story …“] 


Picture yourself as the manager of a service that is poorly. Very poorly. You are getting a constant barrage of criticism and complaints and the occasional catastrophe. Your service is struggling to meet the required delivery time performance. Your service is struggling to stay in budget – let alone meet future cost improvement targets. Your life is a constant fire-fight and you are getting very tired and depressed. Nothing you try seems to make any difference. You are starting to think that anything is better than this – even unemployment! But you have a family to support and jobs are hard to come by in austere times so jumping is not an option. There is no way out. You feel you are going under. You feel are drowning. You feel terrified and helpless!

In desperation you type “Management fire-fighting” into your web search box and among the list of hits you see “Process Improvement Emergency Service”.  That looks hopeful. The link takes you to a website and a phone number. What have you got to lose? You dial the number.

It rings twice and a calm voice answers.

?“You are through to the Process Improvement Emergency Service – what is the nature of the process emergency?”

“Um – my service feels like it is on fire and I am drowning!”

The calm voice continues in a reassuring tone.

?“OK. Have you got a minute to answer three questions?”

“Yes – just about”.

?“OK. First question: Is your service safe?”

“Yes – for now. We have had some catastrophes but have put in lots of extra safety policies and checks which seems to be working. But they are creating a lot of extra work and pushing up our costs and even then we still have lots of criticism and complaints.”

?“OK. Second question: Is your service financially viable?”

“Yes, but not for long. Last year we just broke even, this year we are projecting a big deficit. The cost of maintaining safety is ‘killing’ us.”

?“OK. Third question: Is your service delivering on time?”

“Mostly but not all of the time, and that is what is causing us the most pain. We keep getting beaten up for missing our targets.  We constantly ask, argue and plead for more capacity and all we get back is ‘that is your problem and your job to fix – there is no more money’. The system feels chaotic. There seems to be no rhyme nor reason to when we have a good day or a bad day. All we can hope to do is to spot the jobs that are about to slip through the net in time; to expedite them; and to just avoid failing the target. We are fire-fighting all of the time and it is not getting better. In fact it feels like it is getting worse. And no one seems to be able to do anything other than blame each other.”

There is a short pause then the calm voice continues.

?“OK. Do not panic. We can help – and you need to do exactly what we say to put the fire out. Are you willing to do that?”

“I do not have any other options! That is why I am calling.”

The calm voice replied without hesitation. 

?“We all always have the option of walking away from the fire. We all need to be prepared to exercise that option at any time. To be able to help then you will need to understand that and you will need to commit to tackling the fire. Are you willing to commit to that?”

You are surprised and strangely reassured by the clarity and confidence of this response and you take a moment to compose yourself.

“I see. Yes, I agree that I do not need to get toasted personally and I understand that you cannot parachute in to rescue me. I do not want to run away from my responsibility – I will tackle the fire.”

?“OK. First we need to know how stable your process is on the delivery time dimension. Do you have historical data on demand, activity and delivery time?”

“Hey! Data is one thing I do have – I am drowning in the stuff! RAG charts that blink at me like evil demons! None of it seems to help though – the more data I get sent the more confused I become!”

?“OK. Do not panic.  The data you need is very specific. We need the start and finish events for the most recent one hundred completed jobs. Do you have that?”

“Yes – I have it right here on a spreadsheet – do I send the data to you to analyse?”

?“There is no need to do that. I will talk you through how to do it.”

“You mean I can do it now?”

?“Yes – it will only take a few minutes.”

“OK, I am ready – I have the spreadsheet open – what do I do?”

?“Step 1. Arrange the start and finish events into two columns with a start and finish event for each task on each row.

You copy and paste the data you need into a new worksheet. 

“OK – done that”.

?“Step 2. Sort the two columns into ascending order using the start event.”

“OK – that is easy”.

?“Step 3. Create a third column and for each row calculate the difference between the start and the finish event for that task. Please label it ‘Lead Time’”.

“OK – do you want me to calculate the average Lead Time next?”

There was a pause. Then the calm voice continued but with a slight tinge of irritation.

?“That will not help. First we need to see if your system is unstable. We need to avoid the Flaw of Averages trap. Please follow the instructions exactly. Are you OK with that?”

This response was a surprise and you are starting to feel a bit confused.    

“Yes – sorry. What is the next step?”

?“Step 4: Plot a graph. Put the Lead Time on the vertical axis and the start time on the horizontal axis”.

“OK – done that.”

?“Step 5: Please describe what you see?”

“Um – it looks to me like a cave full of stalagtites. The top is almost flat, there are some spikes, but the bottom is all jagged.”

?“OK. Step 6: Does the pattern on the left-side and on the right-side look similar?”

“Yes – it does not seem to be rising or falling over time. Do you want me to plot the smoothed average over time or a trend line? They are options on the spreadsheet software. I do that use all the time!”

The calm voice paused then continued with the irritated overtone again.

?“No. There is no value is doing that. Please stay with me here. A linear regression line is meaningless on a time series chart. You may be feeling a bit confused. It is common to feel confused at this point but the fog will clear soon. Are you OK to continue?”

An odd feeling starts to grow in you: a mixture of anger, sadness and excitement. You find yourself muttering “But I spent my own hard-earned cash on that expensive MBA where I learned how to do linear regression and data smoothing because I was told it would be good for my career progression!”

?“I am sorry I did not catch that? Could you repeat it for me?”

“Um – sorry. I was talking to myself. Can we proceed to the next step?”

?”OK. From what you say it sounds as if your process is stable – for now. That is good.  It means that you do not need to Resuscitate your process and we can move to the Review phase and start to look for the cause of the pain. Are you OK to continue?”

An uncomfortable feeling is starting to form – one that you cannot quite put your finger on.

“Yes – please”. 

?Step 7: What is the value of the Lead Time at the ‘cave roof’?”

“Um – about 42”

?“OK – Step 8: What is your delivery time target?”

“42”

?“OK – Step 9: How is your delivery time performance measured?”

“By the percentage of tasks that are delivered late each month. Our target is better than 95%. If we fail any month then we are named-and-shamed at the monthly performance review meeting and we have to explain why and what we are going to do about it. If we succeed then we are spared the ritual humiliation and we are rewarded by watching others else being mauled instead. There is always someone in the firing line and attendance at the meeting is not optional!”

You also wanted to say that the data you submit is not always completely accurate and that you often expedite tasks just to avoid missing the target – in full knowkedge that the work had not been competed to the required standard. But you hold that back. Someone might be listening.

There was a pause. Then the calm voice continued with no hint of surprise. 

?“OK. Step 10. The most likely diagnosis here is a DRAT. You have probably developed a Gaussian Horn that is creating the emotional pain and that is fuelling the fire-fighting. Do not panic. This is a common and curable process illness.”

You look at the clock. The conversation has taken only a few minutes. Your feeling of panic is starting to fade and a sense of relief and curiosity is growing. Who are these people?

“Can you tell me more about a DRAT? I am not familiar with that term.”

?“Yes.  Do you have two minutes to continue the conversation?”

“Yes indeed! You have my complete attention for as long as you need. The emails can wait.”

The calm voice continues.

?“OK. I may need to put you on hold or call you back if another emergency call comes in. Are you OK with that?”

“You mean I am not the only person feeling like this?”

?“You are not the only person feeling like this. The process improvement emergency service, or PIES as we call it, receives dozens of calls like this every day – from organisations of every size and type.”

“Wow! And what is the outcome?”

There was a pause. Then the calm voice continued with an unmistakeable hint of pride.

?“We have a 100% success rate to date – for those who commit. You can look at our performance charts and the client feedback on the website.”

“I certainly will! So can you explain what a DRAT is?” 

And as you ask this you are thinking to yourself ‘I wonder what happened to those who did not commit?’ 

The calm voice interrupts your train of thought with a well-practiced explanation.

?“DRAT stands for Delusional Ratio and Arbitrary Target. It is a very common management reaction to unintended negative outcomes such as customer complaints. The concept of metric-ratios-and-performance-specifications is not wrong; it is just applied indiscriminately. Using DRATs can drive short-term improvements but over a longer time-scale they always make the problem worse.”

One thought is now reverberating in your mind. “I knew that! I just could not explain why I felt so uneasy about how my service was being measured.” And now you have a new feeling growing – anger.  You control the urge to swear and instead you ask:

“And what is a Horned Gaussian?”

The calm voice was expecting this question.

?“It is easier to demonstrate than to explain. Do you still have your spreadsheet open and do you know how to draw a histogram?”

“Yes – what do I need to plot?”

?“Use the Lead Time data and set up ten bins in the range 0 to 50 with equal intervals. Please describe what you see”.

It takes you only a few seconds to do this.  You draw lots of histograms – most of them very colourful but meaningless. No one seems to mind though.

“OK. The histogram shows a sort of heap with a big spike on the right hand side – at 42.”

The calm voice continued – this time with a sense of satisfaction.

?“OK. You are looking at the Horned Gaussian. The hump is the Gaussian and the spike is the Horn. It is a sign that your complex adaptive system behaviour is being distorted by the DRAT. It is the Horn that causes the pain and the perpetual fire-fighting. It is the DRAT that causes the Horn.”

“Is it possible to remove the Horn and put out the fire?”

?“Yes.”

This is what you wanted to hear and you cannot help cutting to the closure question.

“Good. How long does that take and what does it involve?”

The calm voice was clearly expecting this question too.

?“The Gaussian Horn is a non-specific reaction – it is an effect – it is not the cause. To remove it and to ensure it does not come back requires treating the root cause. The DRAT is not the root cause – it is also a knee-jerk reaction to the symptoms – the complaints. Treating the symptoms requires learning how to diagnose the specific root cause of the lead time performance failure. There are many possible contributors to lead time and you need to know which are present because if you get the diagnosis wrong you will make an unwise decision, take the wrong action and exacerbate the problem.”

Something goes ‘click’ in your head and suddently your fog of confusion evaporates. It is like someone just switched a light on.

“Ah Ha! You have just explained why nothing we try seems to work for long – if at all.  How long does it take to learn how to diagnose and treat the specific root causes?”

The calm voice was expecting this question and seemed to switch to the next part of the script.

?“It depends on how committed the learner is and how much unlearning they have to do in the process. Our experience is that it takes a few hours of focussed effort over a few weeks. It is rather like learning any new skill. Guidance, practice and feedback are needed. Just about anyone can learn how to do it – but paradoxically it takes longer for the more experienced and, can I say, cynical managers. We believe they have more unlearning to do.”

You are now feeling a growing sense of urgency and excitement.

“So it is not something we can do now on the phone?”

?“No. This conversation is just the first step.”

You are eager now – sitting forward on the edge of your chair and completely focussed.

“OK. What is the next step?”

There is a pause. You sense that the calm voice is reviewing the conversation and coming to a decision.

?“Before I can answer your question I need to ask you something. I need to ask you how you are feeling.”

That was not the question you expected! You are not used to talking about your feelings – especially to a complete stranger on the phone – yet strangely you do not sense that you are being judged. You have is a growing feeling of trust in the calm voice.

You pause, collect your thoughts and attempt to put your feelings into words. 

“Er – well – a mixture of feelings actually – and they changed over time. First I had a feeling of surprise that this seems so familiar and straightforward to you; then a sense of resistance to the idea that my problem is fixable; and then a sense of confusion because what you have shown me challenges everything I have been taught; and then a feeling distrust that there must be a catch and then a feeling of fear of embarassement if I do not spot the trick. Then when I put my natural skepticism to one side and considered the possibility as real then there was a feeling of anger that I was not taught any of this before; and then a feeling of sadness for the years of wasted time and frustration from battling something I could not explain.  Eventually I started to started to feel that my cherished impossibility belief was being shaken to its roots. And then I felt a growing sense of curiosity, optimism and even excitement that is also tinged with a feeling of fear of disappointment and of having my hopes dashed – again.”

There was a pause – as if the calm voice was digesting this hearty meal of feelings. Then the calm voice stated:

?“You are experiencing the Nerve Curve. It is normal and expected. It is a healthy sign. It means that the healing process has already started. You are part of your system. You feel what it feels – it feels what you do. The sequence of negative feelings: the shock, denial, anger, sadness, depression and fear will subside with time and the positive feelings of confidence, curiosity and excitement will replace them. Do not worry. This is normal and it takes time. I can now suggest the next step.”

You now feel like you have just stepped off an emotional rollercoaster – scary yet exhilarating at the same time. A sense of relief sweeps over you. You have shared your private emotional pain with a stranger on the phone and the world did not end! There is hope.

“What is the next step?”

This time there was no pause.

?“To commit to learning how to diagnose and treat your process illnesses yourself.”

“You mean you do not sell me an expensive training course or send me a sharp-suited expert who will come tell me what to do and charge me a small fortune?”

There is an almost sarcastic tone to your reply that you regret as soon as you have spoken.

Another pause.  An uncomfortably long one this time. You sense the calm voice knows that you know the answer to your own question and is waiting for you to answer it yourself.

You answer your own question.  

“OK. I guess not. Sorry for that. Yes – I am definitely up for learning how! What do I need to do.”

?“Just email us. The address is on the website. We will outline the learning process. It is neither difficult nor expensive.”

The way this reply was delivered – calmly and matter-of-factly – was reassuring but it also promoted a new niggle – a flash of fear.

“How long have I got to learn this?”

This time the calm voice had an unmistakable sense of urgency that sent a cold prickles down your spine.

?”Delay will add no value. You are being stalked by the Horned Gaussian. This means your system is on the edge of a catastrophe cliff. It could tip over any time. You cannot afford to relax. You must maintain all your current defenses. It is a learning-by-doing process. The sooner you start to learn-by-doing the sooner the fire starts to fade and the sooner you move away from the edge of the cliff.”       

“OK – I understand – and I do not know why I did not seek help a long time ago.”

The calm voice replied simply.

?”Many people find seeking help difficult. Especially senior people”.

Sensing that the conversation is coming to an end you feel compelled to ask:

“I am curious. Where do the DRATs come from?”

?“Curiosity is a healthy attitude to nurture. We believe that DRATs originated in finance departments – where they were originally called Fiscal Averages, Ratios and Targets.  At some time in the past they were sucked into operations and governance departments by a knowledge vacuum created by an unintended error of omission.”

You are not quite sure what this unfamiliar language means and you sense that you have strayed outside the scope of the “emergency script” but the phrase ‘error of omission sounds interesting’ and pricks your curiosity. You ask: 

“What was the error of omission?”

?“We believe it was not investing in learning how to design complex adaptive value systems to deliver capable win-win-win performance. Not investing in learning the Science of Improvement.”

“I am not sure I understand everything you have said.”

?“That is OK. Do not worry. You will. We look forward to your email.  My name is Bob by the way.”

“Thank you so much Bob. I feel better just having talked to someone who understands what I am going through and I am grateful to learn that there is a way out of this dark pit of despair. I will look at the website and send the email immediately.”

?”I am happy to have been of assistance.”

[/reveal]

A Recipe for Improvement PIE.

Most of us are realists. We have to solve problems in the real world so we prefer real examples and step-by-step how-to-do recipes.

A minority of us are theorists and are more comfortable with abstract models and solving rhetorical problems.

Many of these Improvement Science blog articles debate abstract concepts – because I am a strong iNtuitor by nature. Most realists are Sensors – so by popular request here is a “how-to-do” recipe for a Productivity Improvement Exercise (PIE)

Step 1 – Define Productivity.

There are many definitions we could choose because productivity means the results delivered divided by the resources used.  We could use any of the three currencies – quality, time or money – but the easiest is money. And that is because it is easier to measure and we have well established department for doing it – Finance – the guardians of the money.  There are two other departments who may need to be involved – Governance (the guardians of the safety) and Operations (the guardians of the delivery).

So the definition we will use is productivity = revenue generated divided cost incurred.

Step 2 – Draw a map of the process we want to make more productive.

This means creating a picture of the parts and their relationships to each other – in particular what the steps in the process are; who does what, where and when; what is done in parallel and what is done in sequence; what feeds into what and what depends on what. The output of this step is a diagram with boxes and arrows and annotations – called a process map. It tells us at a glance how complex our process is – the number of boxes and the number of arrows.  The simpler the process the easier it is to demonstrate a productivity improvement quickly and unambiguously.

Step 3 – Decide the objective metrics that will tell us our productivity.

We have chosen a finanical measure of productivity so we need to measure revenue and cost over time – and our Finance department do that already so we do not need to do anything new. We just ask them for the data. It will probably come as a monthly report because that is how Finance processes are designed – the calendar month accounting cycle is not negotiable.

We will also need some internal process metrics (IPMs) that will link to the end of month productivity report values because we need to be observing our process more often than monthly. Weekly, daily or even task-by-task may be necessary – and our monthly finance reports will not meet that time-granularity requirement.

These internal process metrics will be time metrics.

Start with objective metrics and avoid the subjective ones at this stage. They are necessary but they come later.

Step 4 – Measure the process.

There are three essential measures we usually need for each step in the process: A measure of quality, a measure of time and a measure of cost.  For the purposes of this example we will simplify by making three assumptions. Quality is 100% (no mistakes) and Predictability is 100% (no variation) and Necessity is 100% (no worthless steps). This means that we are considering a simplified and theoretical situation but we are novices and we need to start with the wood and not get lost in the trees.

The 100% Quality means that we do not need to worry about Governance for the purposes of this basic recipe.

The 100% Predictability means that we can use averages – so long as we are careful.

The 100% Necessity means that we must have all the steps in there or the process will not work.

The best way to measure the process is to observe it and record the events as they happen. There is no place for rhetoric here. Only reality is acceptable. And avoid computers getting in the way of the measurement. The place for computers is to assist the analysis – and only later may they be used to assist the maintenance – after the improvement has been achieved.

Many attempts at productivity improvement fail at this point – because there is a strong belief that the more computers we add the better. Experience shows the opposite is usually the case – adding computers adds complexity, cost and the opportunity for errors – so beware.

Step 5 – Identify the Constraint Step.

The meaning of the term constraint in this context is very specific – it means the step that controls the flow in the whole process.  The critical word here is flow. We need to identify the current flow constraint.

A tap or valve on a pipe is a good example of a flow constraint – we adjust the tap to control the flow in the whole pipe. It makes no difference how long or fat the pipe is or where the tap is, begining, middle or end. (So long as the pipe is not too long or too narrow or the fluid too gloopy because if they are then the pipe will become the flow constraint and we do not want that).

The way to identify the constraint in the system is to look at the time measurements. The step that shows the same flow as the output is the constraint step. (And remember we are using the simplified example of no errors and no variation – in real life there is a bit more to identifying the constraint step).

Step 6 – Identify the ideal place for the Constraint Step.

This is the critical-to-success step in the PIE recipe. Get this wrong and it will not work.

This step requires two pieces of measurement data for each step – the time data and the cost data. So the Operational team and the Finance team will need to collaborate here. Tricky I know but if we want improved productivity then there is no alternative.

Lots of productivity improvement initiatives fall at the Sixth Fence – so beware.  If our Finance and Operations departments are at war then we should not consider even starting the race. It will only make the bad situation even worse!

If they are able to maintain an adult and respectful face-to-face conversation then we can proceed.

The time measure for each step we need is called the cycle time – which is the time interval from starting one task to being ready to start the next one. Please note this is a precise definition and it should be used exactly as defined.

The money measure for each step we need is the fully absorbed cost of time of providing the resource.  Your Finance department will understand that – they are Masters of FACTs!

The magic number we need to identify the Ideal Constraint is the product of the Cycle Time and the FACT – the step with the highest magic number should be the constraint step. It should control the flow in the whole process. (In reality there is a bit more to it than this but I am trying hard to stay out of the trees).

Step 7 – Design the capacity so that the Ideal Constraint is the Actual Constraint.

We are using a precise definition of the term capacity here – the amount of resource-time available – not just the number of resources available. Again this is a precise definition and should be used as defined.

The capacity design sequence  means adding and removing capacity to and from steps so that the constraint moves to where we want it.

The sequence  is:
7a) Set the capacity of the Ideal Constraint so it is capable of delivering the required activity and revenue.
7b) Increase the capacity of the all the other steps so that the Ideal Constraint actually controls the flow.
7c) Reduce the capacity of each step in turn, a click at a time until it becomes the constraint then back off one click.

Step 8 – Model your whole design to predict the expected productivity improvement.

This is critical because we are not interested in suck-it-and-see incremental improvement. We need to be able to decide if the expected benefit is worth the effort before we authorise and action any changes.  And we will be asked for a business case. That necessity is not negotiable either.

Lots of productivity improvement projects try to dodge this particularly thorny fence behind a smoke screen of a plausible looking business case that is more fiction than fact. This happens when any of Steps 2 to 7 are omitted or done incorrectly.  What we need here is a model and if we are not prepared to learn how to build one then we should not start. It may only need a simple model – but it will need one. Intuition is too unreliable.

A model is defined as a simplified representation of reality used for making predictions.

All models are approximations of reality. That is OK.

The art of modeling is to define the questions the model needs to be designed to answer (and the precision and accuracy needed) and then design, build and test the model so that it is just simple enough and no simpler. Adding unnecessary complexity is difficult, time consuming, error prone and expensive. Using a computer model when a simple pen-and-paper model would suffice is a good example of over-complicating the recipe!

Many productivity improvement projects that get this far still fall at this fence.  There is a belief that modeling can only be done by Marvins with brains the size of planets. This is incorrect.  There is also a belief that just using a spreadsheet or modelling software is all that is needed. This is incorrect too. Competent modelling requires tools and training – and experience because it is as much art as science.

Step 9 – Modify your system as per the tested design.

Once you have demonstrated how the proposed design will deliver a valuable increase in productivity then get on with it.

Not by imposing it as a fait accompli – but by sharing the story along with the rationale, real data, explanation and results. Ask for balanced, reasoned and respectful feedback. The question to ask is “Can you think of any reasons why this would not work?” Very often the reply is “It all looks OK in theory but I bet it won’t work in practice but I can’t explain why”. This is an emotional reaction which may have some basis in fact. It may also just be habitual skepticism/cynicism. Further debate is usually  worthless – the only way to know for sure is by doing the experiment. As an experiment – as a small-scale and time-limited pilot. Set the date and do it. Waiting and debating will add no value. The proof of the pie is in the eating.

Step 10 – Measure and maintain your system productivity.

Keep measuring the same metrics that you need to calculate productivity and in addition monitor the old constraint step and the new constraint steps like a hawk – capturing their time metrics for every task – and tracking what you see against what the model predicted you should see.

The correct tool to use here is a system behaviour chart for each constraint metric.  The before-the-change data is the baseline from which improvement is measured over time;  and with a dot plotted for each task in real time and made visible to all the stakeholders. This is the voice of the process (VoP).

A review after three months with a retrospective financial analysis will not be enough. The feedback needs to be immediate. The voice of the process will dictate if and when to celebrate. (There is a bit more to this step too and the trees are clamoring for attention but we must stay out of the wood a bit longer).

And after the charts-on-the-wall have revealed the expected improvement has actually happened; and after the skeptics have deleted their ‘we told you so’ emails; and after the cynics have slunk off to sulk; and after the celebration party is over; and after the fame and glory has been snatched by the non-participants – after all of that expected change management stuff has happened …. there is a bit more work to do.

And that is to establish the new higher productivity design as business-as-usual which means tearing up all the old policies and writing new ones: New Policies that capture the New Reality. Bin the out-of-date rubbish.

This is an essential step because culture changes slowly.  If this step is omitted then out-of-date beliefs, attitudes, habits and behaviours will start to diffuse back in, poison the pond, and undo all the good work.  The New Policies are the reference – but they alone will not ensure the improvement is maintained. What is also needed is a PFL – a performance feedback loop.

And we have already demonstrated what that needs to be – the tactical system behaviour charts for the Intended Constraint step.

The finanical productivity metric is the strategic output and is reported monthly – as a system behaviour chart! Just comparing this month with last month is meaningless.  The tactical SBCs for the constraint step must be maintained continuously by the people who own the constraint step – because they control the productivity of the whole process.  They are the guardians of the productivity improvement and their SBCs are the Early Warning System (EWS).

If the tactical SBCs set off an alarm then investigate the root cause immediately – and address it. If they do not then leave it alone and do not meddle.

This is the simplified version of the recipe. The essential framework.

Reality is messier. More complicated. More fun!

Reality throws in lots of rusty spanners so we do also need to understand how to manage the complexity; the unnecessary steps; the errors; the meddlers; and the inevitable variation.  It is possible (though not trivial) to design real systems to deliver much higher productivity by using the framework above and by mastering a number of other tools and techniques.  And for that to succeed the Governance, Operations and Finance functions need to collaborate closely with the People and the Process – initially with guidance from an experienced and competent Improvement Scientist. But only initially. This is a learnable skill. And it takes practice to master – so start with easy ones and work up.

If any of these bits are missing or are dysfunctional the recipe will not work. So that is the first nettle the Executive must grasp. Get everyone who is necessary on the same bus going in the same direction – and show the cynics the exit. Skeptics are OK – they will counter-balance the Optimists. Cynics add no value and are a liability.

What you may have noticed is that 8 of the 10 steps happen before any change is made. 80% of the effort is in the design – only 20% is in the doing.

If we get the design wrong the the doing will be an ineffective and inefficient waste of effort, time and money.


The best complement to real Improvement PIE is a FISH course.


Look Out For The Time Trap!

There is a common system ailment which every Improvement Scientist needs to know how to manage.

In fact, it is probably the commonest.

The Symptoms: Disappointingly long waiting times and all resources running flat out.

The Diagnosis?  90%+ of managers say “It is obvious – lack of capacity!”.

The Treatment? 90%+ of managers say “It is obvious – more capacity!!”

Intuitively obvious maybe – but unfortunately these are incorrect answers. Which implies that 90%+ of managers do not understand how their systems work. That is a bit of a worry.  Lament not though – misunderstanding is a treatable symptom of an endemic system disease called agnosia (=not knowing).

The correct answer is “I do not yet have enough information to make a diagnosis“.

This answer is more helpful than it looks because it prompts four other questions:

Q1. “What other possible system diagnoses are there that could cause this pattern of symptoms?”
Q2. “What do I need to know to distinguish these system diagnoses?”
Q3. “How would I treat the different ones?”
Q4. “What is the risk of making the wrong system diagnosis and applying the wrong treatment?”


Before we start on this list we need to set out a few ground rules that will protect us from more intuitive errors (see last week).

The first Rule is this:

Rule #1: Data without context is meaningless.

For example 130  is a number – it is data. 130 what? 130 mmHg. Ah ha! The “mmHg” is the units – it means millimetres of mercury and it tells us this data is a pressure. But what, where, when,who, how and why? We need more context.

“The systolic blood pressure measured in the left arm of Joe Bloggs, a 52 year old male, using an Omron M2 oscillometric manometer on Saturday 20th October 2012 at 09:00 is 130 mmHg”.

The extra context makes the data much more informative. The data has become information.

To understand what the information actually means requires some prior knowledge. We need to know what “systolic” means and what an “oscillometric manometer” is and the relevance of the “52 year old male”.  This ability to extract meaning from information has two parts – the ability to recognise the language – the syntax; and the ability to understand the concepts that the words are just labels for; the semantics.

To use this deeper understanding to make a wise decision to do something (or not) requires something else. Exploring that would  distract us from our current purpose. The point is made.

Rule #1: Data without context is meaningless.

In fact it is worse than meaningless – it is dangerous. And it is dangerous because when the context is missing we rarely stop and ask for it – we rush ahead and fill the context gaps with assumptions. We fill the context gaps with beliefs, prejudices, gossip, intuitive leaps, and sometimes even plain guesses.

This is dangerous – because the same data in a different context may have a completely different meaning.

To illustrate.  If we change one word in the context – if we change “systolic” to “diastolic” then the whole meaning changes from one of likely normality that probably needs no action; to one of serious abnormality that definitely does.  If we missed that critical word out then we are in danger of assuming that the data is systolic blood pressure – because that is the most likely given the number.  And we run the risk of missing a common, potentially fatal and completely treatable disease called Stage 2 hypertension.

There is a second rule that we must always apply when using data from systems. It is this:

Rule #2: Plot time-series data as a chart – a system behaviour chart (SBC).

The reason for the second rule is because the first question we always ask about any system must be “Is our system stable?”

Q: What do we mean by the word “stable”? What is the concept that this word is a label for?

A: Stable means predictable-within-limits.

Q: What limits?

A: The limits of natural variation over time.

Q: What does that mean?

A: Let me show you.

Joe Bloggs is disciplined. He measures his blood pressure almost every day and he plots the data on a chart together with some context .  The chart shows that his systolic blood pressure is stable. That does not mean that it is constant – it does vary from day to day. But over time a pattern emerges from which Joe Bloggs can see that, based on past behaviour, there is a range within which future behaviour is predicted to fall.  And Joe Bloggs has drawn these limits on his chart as two red lines and he has called them expectation lines. These are the limits of natural variation over time of his systolic blood pressure.

If one day he measured his blood pressure and it fell outside that expectation range  then he would say “I didn’t expect that!” and he could investigate further. Perhaps he made an error in the measurement? Perhaps something else has changed that could explain the unexpected result. Perhaps it is higher than expected because he is under a lot of emotional stress a work? Perhaps it is lower than expected because he is relaxing on holiday?

His chart does not tell him the cause – it just flags when to ask more “What might have caused that?” questions.

If you arrive at a hospital in an ambulance as an emergency then the first two questions the emergency care team will need to know the answer to are “How sick are you?” and “How stable are you?”. If you are sick and getting sicker then the first task is to stabilise you, and that process is called resuscitation.  There is no time to waste.


So how is all this relevant to the common pattern of symptoms from our sick system: disappointingly long waiting times and resources running flat out?

Using Rule#1 and Rule#2:  To start to establish the diagnosis we need to add the context to the data and then plot our waiting time information as a time series chart and ask the “Is our system stable?” question.

Suppose we do that and this is what we see. The context is that we are measuring the Referral-to-Treatment Time (RTT) for consecutive patients referred to a single service called X. We only know the actual RTT when the treatment happens and we want to be able to set the expectation for new patients when they are referred  – because we know that if patients know what to expect then they are less likely to be disappointed – so we plot our retrospective RTT information in the order of referral.  With the Mark I Eyeball Test (i.e. look at the chart) we form the subjective impression that our system is stable. It is delivering a predictable-within-limits RTT with an average of about 15 weeks and an expected range of about 10 to 20 weeks.

So far so good.

Unfortunately, the purchaser of our service has set a maximum limit for RTT of 18 weeks – a key performance indicator (KPI) target – and they have decided to “motivate” us by withholding payment for every patient that we do not deliver on time. We can now see from our chart that failures to meet the RTT target are expected, so to avoid the inevitable loss of income we have to come up with an improvement plan. Our jobs will depend on it!

Now we have a problem – because when we look at the resources that are delivering the service they are running flat out – 100% utilisation. They have no spare flow-capacity to do the extra work needed to reduce the waiting list. Efficiency drives and exhortation have got us this far but cannot take us any further. We conclude that our only option is “more capacity”. But we cannot afford it because we are operating very close to the edge. We are a not-for-profit organisation. The budgets are tight as a tick. Every penny is being spent. So spending more here will mean spending less somewhere else. And that will cause a big argument.

So the only obvious option left to us is to change the system – and the easiest thing to do is to monitor the waiting time closely on a patient-by-patient basis and if any patient starts to get close to the RTT Target then we bump them up the list so that they get priority. Obvious!

WARNING: We are now treating the symptoms before we have diagnosed the underlying disease!

In medicine that is a dangerous strategy.  Symptoms are often not-specific.  Different diseases can cause the same symptoms.  An early morning headache can be caused by a hangover after a long night on the town – it can also (much less commonly) be caused by a brain tumour. The risks are different and the treatment is different. Get that diagnosis wrong and disappointment will follow.  Do I need a hole in the head or will a paracetamol be enough?


Back to our list of questions.

What else can cause the same pattern of symptoms of a stable and disappointingly long waiting time and resources running at 100% utilisation?

There are several other process diseases that cause this symptom pattern and none of them are caused by lack of capacity.

Which is annoying because it challenges our assumption that this pattern is always caused by lack of capacity. Yes – that can sometimes be the cause – but not always.

But before we explore what these other system diseases are we need to understand why our current belief is so entrenched.

One reason is because we have learned, from experience, that if we throw flow-capacity at the problem then the waiting time will come down. When we do “waiting list initiatives” for example.  So if adding flow-capacity reduces the waiting time then the cause must be lack of capacity? Intuitively obvious.

Intuitively obvious it may be – but incorrect too.  We have been tricked again. This is flawed causal logic. It is called the illusion of causality.

To illustrate. If a patient complains of a headache and we give them paracetamol then the headache will usually get better.  That does not mean that the cause of headaches is a paracetamol deficiency.  The headache could be caused by lots of things and the response to treatment does not reliably tell us which possible cause is the actual cause. And by suppressing the symptoms we run the risk of missing the actual diagnosis while at the same time deluding ourselves that we are doing a good job.

If a system complains of  long waiting times and we add flow-capacity then the long waiting time will usually get better. That does not mean that the cause of long waiting time is lack of flow-capacity.  The long waiting time could be caused by lots of things. The response to treatment does not reliably tell us which possible cause is the actual cause – so by suppressing the symptoms we run the risk of missing the diagnosis while at the same time deluding ourselves that we are doing a good job.

The similarity is not a co-incidence. All systems behave in similar ways. Similar counter-intuitive ways.


So what other system diseases can cause a stable and disappointingly long waiting time and high resource utilisation?

The commonest system disease that is associated with these symptoms is a time trap – and they have nothing to do with capacity or flow.

They are part of the operational policy design of the system. And we actually design time traps into our systems deliberately! Oops!

We create a time trap when we deliberately delay doing something that we could do immediately – perhaps to give the impression that we are very busy or even overworked!  We create a time trap whenever we deferring until later something we could do today.

If the task does not seem important or urgent for us then it is a candidate for delaying with a time trap.

Unfortunately it may be very important and urgent for someone else – and a delay could be expensive for them.

Creating time traps gives us a sense of power – and it is for that reason they are much loved by bureaucrats.

To illustrate how time traps cause these symptoms consider the following scenario:

Suppose I have just enough resource-capacity to keep up with demand and flow is smooth and fault-free.  My resources are 100% utilised;  the flow-in equals the flow-out; and my waiting time is stable.  If I then add a time trap to my design then the waiting time will increase but over the long term nothing else will change: the flow-in,  the flow-out,  the resource-capacity, the cost and the utilisation of the resources will all remain stable.  I have increased waiting time without adding or removing capacity. So lack of resource-capacity is not always the cause of a longer waiting time.

This new insight creates a new problem; a BIG problem.

Suppose we are measuring flow-in (demand) and flow-out (activity) and time from-start-to-finish (lead time) and the resource usage (utilisation) and we are obeying Rule#1 and Rule#2 and plotting our data with its context as system behaviour charts.  If we have a time trap in our system then none of these charts will tell us that a time-trap is the cause of a longer-than-necessary lead time.

Aw Shucks!

And that is the primary reason why most systems are infested with time traps. The commonly reported performance metrics we use do not tell us that they are there.  We cannot improve what we cannot see.

Well actually the system behaviour charts do hold the clues we need – but we need to understand how systems work in order to know how to use the charts to make the time trap diagnosis.

Q: Why bother though?

A: Simple. It costs nothing to remove a time trap.  We just design it out of the process. Our flow-in will stay the same; our flow-out will stay the same; the capacity we need will stay the same; the cost will stay the same; the revenue will stay the same but the lead-time will fall.

Q: So how does that help me reduce my costs? That is what I’m being nailed to the floor with as well!

A: If a second process requires the output of the process that has a hidden time trap then the cost of the queue in the second process is the indirect cost of the time trap.  This is why time traps are such a fertile cause of excess cost – because they are hidden and because their impact is felt in a different part of the system – and usually in a different budget.

To illustrate. Suppose that 60 patients per day are discharged from our hospital and each one requires a prescription of to-take-out (TTO) medications to be completed before they can leave.  Suppose that there is a time trap in this drug dispensing and delivery process. The time trap is a policy where a porter is scheduled to collect and distribute all the prescriptions at 5 pm. The porter is busy for the whole day and this policy ensures that all the prescriptions for the day are ready before the porter arrives at 5 pm.  Suppose we get the event data from our electronic prescribing system (EPS) and we plot it as a system behaviour chart and it shows most of the sixty prescriptions are generated over a four hour period between 11 am and 3 pm. These prescriptions are delivered on paper (by our busy porter) and the pharmacy guarantees to complete each one within two hours of receipt although most take less than 30 minutes to complete. What is the cost of this one-delivery-per-day-porter-policy time trap? Suppose our hospital has 500 beds and the total annual expense is £182 million – that is £0.5 million per day.  So sixty patients are waiting for between 2 and 5 hours longer than necessary, because of the porter-policy-time-trap, and this adds up to about 5 bed-days per day – that is the cost of 5 beds – 1% of the total cost – about £1.8 million.  So the time trap is, indirectly, costing us the equivalent of £1.8 million per annum.  It would be much more cost-effective for the system to have a dedicated porter working from 12 am to 5 pm doing nothing else but delivering dispensed TTOs as soon as they are ready!  And assuming that there are no other time traps in the decision-to-discharge process;  such as the time trap created by batching all the TTO prescriptions to the end of the morning ward round; and the time trap created by the batch of delivered TTOs waiting for the nurses to distribute them to the queue of waiting patients!


Q: So how do we nail the diagnosis of a time trap and how do we differentiate it from a Batch or a Bottleneck or Carveout?

A: To learn how to do that will require a bit more explanation of the physics of processes.

And anyway if I just told you the answer you would know how but might not understand why it is the answer. Knowledge and understanding are not the same thing. Wise decisions do not follow from just knowledge – they require understanding. Especially when trying to make wise decisions in unfamiliar scenarios.

It is said that if we are shown we will understand 10%; if we can do we will understand 50%; and if we are able to teach then we will understand 90%.

So instead of showing how instead I will offer a hint. The first step of the path to knowing how and understanding why is in the following essay:

A Study of the Relative Value of Different Time-series Charts for Proactive Process Monitoring. JOIS 2012;3:1-18

Click here to visit JOIS

Structure Time to Fuel Improvement

The expected response to any suggestion of change is “Yes, but I am too busy – I do not have time.”

And the respondent is correct. They do not.

All their time is used just keeping their head above water or spinning the hamster wheel or whatever other metaphor they feel is appropriate.  We are at an impasse. A stalemate. We know change requires some investment of time and there is no spare time to invest so change cannot happen. Yes?  But that is not good enough – is it?

Well-intended experts proclaim that “I’m too busy” actually means “I have other things to do that are higher priority“. And by that we mean ” … that are a greater threat to my security and to what I care about“. So to get our engagement our well-intended expert pours emotional petrol on us and sets light to it. They show us dramatic video evidence of how our “can’t do” attitude and behaviour is part of the problem. We are the recalcitrant child who is standing in the way of  change and we need to have our face rubbed in our own cynical poo.

Now our platform is really burning. Inflamed is exactly what we are feeling – angry in fact. “Thanks-a-lot. Now #!*@ off!”   And our well-intentioned expert retreats – it is always the same. The Dinosaurs and the Dead Wood are clogging the way ahead.

Perhaps a different perspective might be more constructive.


It is not just how much time we have that is most important – it is how our time is structured.


Humans hate unstructured time. We like to be mentally active for all of our waking moments. 

To test this hypothesis try this demonstration of our human need to fill idle time with activity. When you next talk to someone you know well – at some point after they have finished telling you something just say nothing;  keep looking at them; and keep listening – and say nothing. For up to twenty seconds if necessary. Both you and they will feel an overwhelming urge to say something, anything – to fill the silence. It is called the “pregnant pause effect” and most people find even a gap of a second or two feels uncomfortable. Ten seconds would be almost unbearable. Hold your nerve and stay quiet. They will fill the gap.

This technique is used by cognitive behavioural therapists, counsellors and coaches to help us reveal stuff about ourselves to ourselves – and it works incredibly well. It is also used for less altrusitic purposes by some – so when you feel the pain of the pregnant pause just be aware of what might be going on and counter with a question.


If we have no imposed structure for our time then we will create one – because we feel better for it. We have a name for these time-structuring behaviours: habits, past-times and rituals. And they are very important to us because they reduce anxiety.

There is another name for a pre-meditated time-structure:  it is called a plan or a process design. Many people hate not having a plan – and to them any plan is better than none. So in the absence of an imposed alternative we habitually make do with time-wasting plans and poorly designed processes.  We feel busy because that is the purpose of our time-structuring behaviour – and we look busy too – which is also important. This has an important lesson for all improvement scientists: Using a measure of “business” such as utilisation as a measure of efficiency and productivity is almost meaningless. Utilisation does not distinguish between useful busi-ness and useless busi-ness.

We also time-structure our non-working lives. Reading a newspaper, doing the crossword, listening to the radio,  watching television, and web-browsing are all time-structuring behaviours.


This insight into our need for structured time leads to a rational way to release time for change and improvement – and that is to better structure some of our busy time.

A useful metaphor for a time-structure is a tangible structure – such as a building. Buildings have two parts – a supporting, load bearing, structural framework and the functional fittings that are attached to it. Often the structural framework is invisible in the final building – invisible but essential. That is why we need structural engineers. The same is true for time-structuring: the supporting form should be there but it should not not get in the way of the intended function. That is why we need process design engineers too. Good process design is invisible time-structuring.


One essential investment of time in all organisations is communication. Face-to-face talking, phone calls, SMS, emails, reports, meetings, presentations, webex and so on. We spend more time communicating with each other than doing anything else other than sleeping.  And more niggles are generated by poorly designed and delivered communication processes than everything else combined. By a long way.


As an example let us consider management meetings.

From a process design perspective mmany management meetings are both ineffective and inefficient. They are unproductive.  So why do we still have them?

One possibkle answer is because meetings have two other important purposes: first as a tool for social interaction, and second as a way to structure time.  It turns out that we dislike loneliness even more than idleness – and we can meet both needs at the same time by having a meeting. Productivity is not the primary purpose.


So when we do have to communicate effectively and efficiently in order to collectively resolve a real and urgent problem then we are ill prepared. And we know this. We know that as soon as Crisis Management Committees start to form then we are in really big trouble. What we want in a time of crisis is for someone to structure time for us. To tell us what to do.

And some believe that we unconsciously create crisis after crisis for just that purpose.


Recently I have been running an improvement experiment.  I have  been testing the assumption that we have to meet face-to-face to be effective. This has big implications for efficiency because I work in a multi-site organisation and to attend a meeting on another site implies travelling there and back. That travel takes one hour in each direction when all the separate parts are added together. It has two other costs. The financial cost of the fuel – which is a variable cost – if I do not travel then I do not incur the cost. And there is an emotional cost – I have to concentrate on driving and will use up some of my brain-fuel in doing so. There are three currencies – emotional, temporal and financial.

The experiment was a design change. I changed the design of the communication process from at-the-same-place-and-time to just at-the-same-time. I used an internet-based computer-to-computer link (rather like Skype or FaceTime but with some other useful tools like application sharing).

It worked much better than I expected.

There was the anticipated “we cannot do this because we do not have webcams and no budget for even pencils“. This was solved by buying webcams from the money saved by not burning petrol. The conversion rate was one webcam per four trips – and the webcam is a one off capital cost not a recurring revenue cost. This is accpiuntant-speak for “the actual cash released will fund the change“. No extra budget is required. And combine the fuel savings for everyone, and parking charges and the payback time is even shorter.

There were also the anticipated glitches as people got used to the unfamiliar technology (they did not practice of course because they were too busy) but the niggles go away with a few iterations.

So what were the other benefits?

Well one was the travel time saved – two hours per meeting – which was longer than the meeting! The released time cannot be stored and used later like the money can – it has to be reinvested immediately. I reinvested it in other improvement work. So the benefit was amplified.

Another was the brain-fuel saved from not having to drive – which I used to offset my cumuative brain-fuel deficit called chronic fatigue. The left over was re-invested in the improvement work. 100% recycled. Nothing was wasted.


The unexpected benefit was the biggest one.

The different communication design of a virtual meeting required a different form of meeting structure and discipline. It took a few iterations to realise this – then click – both effectiveness and efficiency jumped up. The time became even better structured, more productive and released even more time to reinvest. Wow!

And the whole thing funded itself.

Predictable and Explainable – or Not

It is a common and intuitively reasonable assumption to believe that if something is explainable then it is predictable; and if it is not explainable then it is not predictable. Unfortunately this beguiling assumption is incorrect.  Some things are explainable but not predictable; and some others are predictable but not explainable.  Believe me? Of course not. We are all skeptics when our intuitively obvious assumptions and conclusions are challenged! We want real and rational evidence not rhetorical exhortation.

OK.  Explainable means that the principles that guide the process are conceptually simple. We can explain the parts in detail and we can explain how they are connected together in detail. Predictable implies that if we know the starting point in detail, and the intervention in detail, then we can predict what the outcome will be – in detail.


Let us consider an example. Say we know how much we have in our bank account, and we know how much we intend to spend on that new whizzo computer, then we can predict what will be left in out bank account when the payment has been processed. Yes. This is an explainable and predictable system. It is called a linear system.


Let us consider another example. Say we know we have six dice each with numbers 1 to 6 printed on them and we throw them at the same time. Can we predict where they will land and what the final sum will be? No. We can say that it will be between 6 and 36 but that is all. And after we have thrown the dice we will not be able to explain, in detail, how they came to rest exactly where they did.  This is an unpredictable and unexplainable system. It is called a random system.


This is a picture of a conceptually simple system. It is a novelty toy and it comprises two thin sheets of glass held a few millimetres apart by some curved plastic spacers. The narrow space is filled with green coloured oil, some coarse black volcanic sand, and some fine white coral sand. That is all. It is a conceptually simple toy. I have (by some magical means) layered the sand so that the coarse black sand is at the bottom and the fine white sand is on top. It is stable arrangement – and explainable. I then tipped the toy on its side – I rotated it through 90 degrees. It is a simple intervention – and explainable.

My intervention has converted a stable system to an unstable one and I confidently predict that the sand and oil will flow under the influence of gravity. There is no randomness here – I do not jiggle the toy – so the outcome should be predictable because I can explain all the parts in detail before we start;  and I can explain the process in detail; and I can explain precisely what my intervention will be. So I should be able to predict the final configuration of the sand when this simple and explainable system finally settles into a new stable state again. Yes?

Well, I cannot. I can make some educated guesses – some plausible projections. But the only way to find out precisely what will happen is by doing the experiment and observing what actually happens.

This is what happened.

The final, stable configuration of the coarse black and fine white sand has a strange beauty in the way the layers are re-arranged. The result is not random – it has structure. And with the benefit of hindsight I feel I can work backwards and understand how it might have come about. It is explainable in retrospect but I could not predict it in prospect – even with a detailed knowledge of the starting point and the process.

This is called a non-linear system. Explainable in concept but difficult to predict in practice. The weather is another example of a non-linear system – explainable in terms of the physics but not precisely predictable. How reliable are our long range weather forecasts – or the short range ones for that matter?

Non-linear systems exhibit complex and unpredictable  behaviour – even though they may be simple in concept and uncomplicated in construction.  Randomness is usually present in real systems but it is not the cause of the complex behaviour, and making our systems more complicated seems likely to result in more unpredictable behaviour – not less.

If we want the behaviour of our system to be predictable and our system has non-linear parts and relationships in it – then we are forced to accept two Universal Truths.

1. That our system behaviour will only be predictable within limits (even if there is little or no randomness in it).

2. That to keep the behaviour within acceptable limits then we need to be careful how we arrange the parts and how they relate to each other.

This challenge of creating a predictable-within-acceptable-limits system from non-linear parts is called resilient design.


We have a fourth option to consider: a system that has a predictable outcome but an unexplainable reason.

We make predictions two ways – by working out what will happen or by remembering what has happened before. The second method is much easier so it is the one we use most of the time: it is called re-cognition. We call it knowledge.

If we have a black box with inputs on one side and outputs on the other, and we observe that when we set the inputs to a specific configuration we always get the same output – then we have a predicable system. We cannot explain how the inputs result in the output because the inner workings are hidden. It could be very simple – or it could be fiendishly complicated – we do not know.

It this situation we have no choice but to accept the status quo – and we have to accept that to get a predictable outcome we have to follow the rules and just do what we have always done before. It is the creed of blind acceptance – the If you always do what you have always done you will always get what you always got. It is knowledge but it is not understanding.  New knowledge  can only be found by trial and error.  It is not wisdom, it is not design, it is not curiosity and it is not Improvement Science.


If our systems are non-linear (which they are) and we want predictable and acceptable performance (which we do) then we must strive to understand them and then to design them to be as simple as possible (which is difficult) so that we have the greatest opportunity to improve their performance by design (which is called Improvement Science).


This is a snapshot of the evolving oil-and-sand system. Look at that weird wine-glass shaped hole in the top section caused by the black sand being pulled down through the gap in the spacer then running down the slope of the middle section to fill a white sand funnel and then slip through the next hole onto the top of the white sand pyramid created by the white sand in the middle section that slipped through earlier onto the top of the sliding sand in the lowest section. Did you predict that? I suspect not. Me neither. But I can explain it – with the benefit of hindsight.

So what is it that is causing this complex behaviour? It is the spacers – the physical constraints to the flow of the sand and oil. And the same is true of systems – when the process hits a constraint then the behaviour suddenly changes and complex behaviour emerges.  And there is more to it than even this. It is the gaps between the spacers that is creating the complex behaviour. The flow from one compartment leaking into the next and influencing its behaviour, and then into the next.  This is what happens in all systems – the more constraints that are added to force the behaviour into predictable channels, and the more gaps that exist in the system of constraints then the more complex and unpredictable the system behaviour becomes. Which is exactly the opposite of the intended outcome.


The lesson that this simple toy can teach us is that if we want stable and predictable (i.e. non-complex) behaviour from our complicated systems then we must design them to operate inside the constraints so that they just never quite touch them. That requires data, information, knowledge, understanding and wise design. That is called Improvement Science.


But if, in an act of desperation, we force constraints onto the system we will make the system less stable, less predictable, less safe, less productive, less enjoyable and less affordable. That is called tampering.

All Aboard for the Ride of Our Lives!

In 1825 the world changed when the Age of Rail was born with the opening of the Darlington-to-Stockton line and the demonstration that a self-powered mobile steam engine could pull more trucks of coal than a team of horses.

This launched the industrial revolution into a new phase by improving the capability to transport heavy loads over long distances more conveniently, reliably, quickly, and cheaply than could canals or roads.

Within 25 years the country was criss-crossed by thousands of miles of railway track and thousands more miles were rapidly spreading across the world. We take it for granted now but this almost overnight success was the result of over 100 years of painful innovation and improvement. Iron rail tracks had been in use for a long time – particularly in quarries and ports. Newcomen’s atmospheric steam engine had been pumping water out of mines since 1712; James Watt and Matthew Boulton had patented their improved separate condenser static steam engine in 1775; and Richard Trevethick had built a self-propelled high pressure steam engine called “Puffing Devil” in 1801. So why did it take so long for the idea to take off? The answer was quite simple – it needed the lure of big profits to attract the entrepreneurs who had the necessary influence and cash to make it happen at scale and pace.  The replacement of windmills and watermills by static steam engines had already allowed factories to be built anywhere – rather than limiting them to the tops of windy hills and the sides of fast flowing rivers. But it was not until the industrial revolution had achieved sufficient momentum that road and canal transport became a serious constraint to further growth of industry, wealth and the British Empire.

But not everyone was happy with the impact that mechanisation brought – the Luddites were the skilled craftsmen who opposed the use of mechanised looms that could be operated by lower-skilled and therefore cheaper labour.  They were crushed in 1812 by political forces more powerful than they were – and the term “luddite” is now used for anyone who blindly opposes change from a position self-protection.

Only 140 years later it was all over for the birthplace of the Rail Age – the steam locomotive was relegated to the museums when Dr Richard Beeching , the efficiency-focussed Technical Director of ICI, published his reports that led to the cost-improvement-programme (CIP) that reorganised the railways and led to the loss of 70,000 jobs, hundreds of small “unprofitable” stations and 1000’s of miles of track.  And the reason for the collapse of the railways was that roads had leap-frogged both canals and railways because the “internal combustion engine” proved a smaller, lighter, more powerful, cheaper and more flexible alternative to steam or horses.

It is of historical interest that Henry Ford developed the production line to mass produce automobiles at a price that a factory worker could afford – and Toyoda invented a self-stopping mechanised loom that improved productivity dramatically by preventing damaged cloth being produced if a thread broke by accident. The historical links come together because Toyoda sold the patents to his self-stopping loom to fund the creation of the Toyota Motor Company which used Henry Ford’s production-line design and integrated the Toyoda self-monitoring, stopping and continuous improvement philosophy.

It was not until twenty years after British Rail was created that Japan emerged as an industrial superpower by demonstrating that it had learned how to improve both quality and reduce cost much more effectively than the “complacent” Europe and America. The tables were turned and this time it was the West that had to learn – and quickly.  Unfortunately not quickly enough. Other developing countries seized the opportunity that mass mechanisation, customisation and a large, low-expectation, low-cost workforce offered. They now produce manufactured goods at prices that European and American companies cannot compete with. Made in Britain has become Made in China.

The lesson of history has been repeated many times – innovations are like seeds that germinate but do not disseminate until the context is just right – then they grow, flower, seed and spread – and are themselves eventually relegated to museums by the innovations that they spawned.

Improvement Science has been in existence for a long time in various forms, and it is now finding more favourable soil to grow as traditional reactive and incremental improvement methods run out of steam when confronted with complex system problems. Wicked problems such as a world population that is growing larger and older at the same time as our reserves of non-renewable natural resources are dwindling.

The promise that Improvement Science offers is the ability to avoid the boom-to-bust economic roller-coaster that devastates communities twice – on the rise and again on the fall. Improvement Science offers an approach that allows sensible and sustainable changes to be planned, implemented and then progressively improved.

So what do we want to do? Watch from the sidelines and hope, or leap aboard and help?

And remember what happened to the Luddites!