Six Weeks

team_puzzle_123456There seems to be a natural cycle to change and improvement.

A pace that feels right and that works well. Try to push faster and resistance increases. Relax and pull slower and interest wanders.

The pace that feels about right is a six week cycle.

So why six weeks? Is it 42 days that is important or it there something about a seven-day week and the number six?

The daily and the weekly cycles are dictated by the Celestial Clockwork.  The day is the Earth’s rotation and the week is one quarter if the 28 day Lunar cycle. These are not arbitrary policies – they are celestial physics. Not negotiable.

So where does the Six come from? That does seem to be something to do with people and psychology.

team_puzzle_SDABDRRemember the Nerve Curve?

The predictable sequence of emotional states that accompanies significant change? The sequence of Shock-Denial-Anger-Bargaining-Depression-Resolution?  It has six stages.  Is that just a co-incidence?

team_puzzle_MMMMMMRemember 6M Design®?

The required sequence of steps that structure any improvement-by-design challenge? It has six stages.

Is that just a co-incidence too?

And is seven days a convenient size? It was originally six-days-of-work and one-day-of-rest. The modern 5-and-2 design is a recent invention.

And if each stage requires at least one week to complete and we require six stages then we get a Six Week cycle.

It sounds lie a plausible hypothesis but is that what happens in reality?

There is a lot of empirical evidence to suggest that it does. It seems we feel comfortable working with six-week chunks of time.  We plan about six weeks ahead.  School terms are divided into about six week chunks. A financial “quarter” is about two chunks. We can fit four of those into a Year with a bit left over.  Action learning seems to work well in six week cycles. Courses are very often carved up into six week modules. It feels OK.

So what does this mean for the Improvement Scientist?

First it suggests that doing something every week makes sense. Leaving it all to the last minute does not.
Second it suggests that each week the step required and the emotional reaction is predictable.
Third it suggests that five weeks of facilitative investment are required.
Fourth it suggests that if something throws a spanner into the sequence the we need to add extra weeks.

And it suggests that in the Seventh Week we can rest, reflect, share and prepare for the next Six Week change cycle.

So maybe Douglas Adams was correct – the Answer to Life the Universe and Everything is Forty Two.

Spreading the Word

clock_hands_spinning_import_150_wht_3149Patience is a virtue for an advocate of Improvementology®.

This week Mike Davidge (Head of Measurement for the former NHS Institute for Innovation and Improvement) posted some feedback on the Journal of Improvement Science site.

His feedback is reproduced here in full with Mike’s permission. The rationale for reproduction that the activity data shows that more people the Blog than the Journal.

Feedback posted on 15/06/2013 at 07:35:05 for paper entitled:

Dodds S. A Case Study of a Successful One-Stop Clinic Schedule Design using Formal Methods . Journal of Improvement Science 2012:6; 1-13.

“It’s only taken me a year to get round to reading this, an improvement on your 9 years to write it! It was well worth the read. You should make a serious attempt to publish this where it gets a wider audience. Rank = 5/5”

thank_you_boing_150_wht_5547Mike is a world expert in healthcare system measurement and improvement so this is a huge compliment. Thank you Mike. He is right too – 1 year is a big improvement on 9 years. So why did it take 9 years to write up?

One reason is that publication was not the purpose. Improvement was the purpose. Another reason was that this was a step in a bigger improvement project – one that is described in Three Wins.  There is a third reason: the design flaws of the traditional academic peer review process. This is radical stuff and upsets a lot of people so we need to be careful.

The two primary design flaws of conventional peer-reviewed academic journals are:

1) that it has a long lead time and
2) that it has a low yield.

So it is very expensive in author-lifetime.  Improvement is not the same as research.  Perfection is not the goal. Author lifetime is a very valuable resource. If it is wasted with an inefficient publication process design then the result is less output and less dissemination of valuable Improvement Science.

So if any visitors would like to benefit from Mike’s recommendation then you can download the full text of the essay here. It has not been peer-reviewed so you will have to make you own minds up about the value. And if you have any questions then you are free to ask the author.

PS. The visitor who points out the most spelling and grammar errors will earn themselves a copy of BaseLine© the time-series analysis software used to create the charts.

Resistance and Persistence

[Bing-Bong]

The email from Leslie was unexpected.

Hi Bob, can I change the planned topic of our session today to talk about resistance. We got off to a great start with our improvement project but now I am hitting brick walls and we are losing momentum. I am getting scared we will stall. Leslie”

Bob replied immediately – it was only a few minutes until their regular teleconference call.

Hi Leslie, no problem. Just firing up the Webex session now. Bob”

[Whoop-Whoop]

The sound bite announced Leslie joining in the teleconference.

<Leslie> Hi Bob. Sorry about the last minute change of plan. Can I describe the scenario?

<Bob> Hi Leslie. Please do.

<Leslie> Well we are at stage five of the 6M Design® sequence and we are monitoring the effect of the first set of design changes that we have made. We started by eliminating design flaws that were generating errors and impairing quality.   The information coming in confirms what we predicted at stage 3.  The problem is that a bunch of “fence-sitters” that said nothing at the start are now saying that the data is a load of rubbish and implying we are cooking the books to make it look better than it is! I am pulling my hair out trying to convince them that it is working.

<Bob> OK. What is your measure for improvement?

<Leslie> The percentage yield from the new quality-by-design process. It is improving. The BaseLine© chart says so.

<Bob> And how is that improvement being reported?

<Leslie> As the average yield per week.  I know we should not aggregate for a month because we need to see the impact of the change as it happens and I know there is a seven-day cycle in the system so we set the report interval at one week.

<Bob> Yes. Those are all valid reasons. What is the essence of the argument against your data?

<Leslie> There is no specific argument – it is just being discounted as “rubbish”.

<Bob> So you are feeling resistance?

<Leslie> You betcha!

<Bob> OK. Let us take a different tack on this. How often do you measure the yield?

<Leslie> Daily.

<Bob> And what is the reason you are using the percentage yield as your metric?

<Leslie> So we can compare one day with the next more easily and plot it on a time-series chart. The denominator is different every day so we cannot use just the count of errors.

<Bob> OK. And how do you calculate the weekly average?

<Leslie> From the daily percentage yields. It is not a difficult calculation!

There was a definite hint of irritation and sarcasm in Leslie’s voice.

<Bob> And how confident are you in your answer?

<Leslie> Completely confident. The team are fantastic. They see the value of this and are collecting the data assiduously. They can feel the improvement. They do not need the data to prove it. The feedback is to convince the fence-sitters and skeptics and they are discounting it.

<Bob> OK so you are confident in the quality of the data going in to your calculation – how confident are you in the data coming out?

<Leslie> What do you mean!  It is a simple calculation – a 12 year old could do.

<Bob> How are you feeling Leslie?

<Leslie>Irritated!

<Bob> Does it feel as if I am resisting too?

<Leslie>Yes!!

<Bob> Irritation is anger – the sense of loss in the present. What do you feel you are losing?

<Leslie> My patience and my self-confidence.

<Bob> So what might be my reasons for resisting?

<Leslie> You could be playing games or you could have a good reason.

<Bob> Do I play games?

<Leslie> Not so far! Sorry … no. You do not do that.

<Bob> So what could be my good reason?

<Leslie> Um. You can feel or see something that I cannot. An error?

<Bob> Yes. If I just feel something is not right I cannot do much else but say “That does not feel right”.  If I can see what I is not right I can explain my rationale for resisting.  Can I try to illuminate?

<Leslie> Yes please!

<Bob> OK – have you got a spreadsheet handy?

<Leslie> Yes.

<Bob> OK – create a column of twenty random numbers in the range 20-80 and label them “daily successes”. Next to them create a second column of random numbers in the range 20-100 and label then “daily activity”.

<Leslie> OK – done that.

<Bob> OK – calculate the % yield by day then the average of the column of daily % yield.

<Leslie> OK – that is exactly how I do it.

<Bob> OK – now sum the columns of successes and activities and calculate the average % yield from those two totals.

<Leslie> Yes – I could do that and it will give the same final answer but I do not do that because I cannot use that data on my run chart – for the reasons I said before.

<Bob> Does it give the same answer?

<Leslie> Um – no. Wait. I must have made an error. Let me check. No. I have done it correctly. They are not the same. Uh?

<Bob> What are you feeling?

<Leslie> Confused!  But the evidence is right there in front of me.

<Bob> An assumption you have been making has just been exposed to be invalid. Your rhetoric does not match reality.

<Leslie> But everyone does this … it is standard practice.

<Bob> And that makes it valid?

<Leslie> No .. of course not. That is one of the fundamental principles of Improvement Science. Just doing what everyone else does is not necessarily correct.

<Bob> So now we must understand what is happening. Can you now change the Daily Activity column so it is the same every day – say 60.

<Leslie> OK. Now my method works. The yield answers are the same.

<Bob> Yes.

<Leslie> Why is that?

<Bob> The story goes back to 1948 when Claude Shannon described “Information Theory”.  When you create a ratio you start with two numbers and end up with only one which implies that information is lost in the conversion.  Two numbers can only give one ratio, but that same ratio can be created by an infinite set of two numbers.  The relationship is asymmetric. It is not an equality. And it has nothing to do with the precision of the data. When we throw data away we create ambiguity.

<Leslie> And in my data the activity by day does vary. There is a regular weekly cycle and some random noise. So the way I am calculating the average yield is incorrect, and the message I am sharing is distorted, so others can quite reasonably challenge the data, and because I was 100% confident I was correct I have been assuming that their resistance was just due to cussedness!

<Bob> There may be some cussedness too. It is sometimes difficult to separate skepticism and cynicism.

<Leslie> So what is the lesson here? There must be more to your example than just exposing a basic arithmetic error.

<Bob> The message is that when you feel resistance you must accept the possibility that you are making an error that you cannot see.  The person demonstrating resistance can feel the emotional pain of a rhetoric-reality mismatch but can not explain the cause. You need to strive to see the problem through their eyes. It is OK to say “With respect I do not see it that way because …”.

<Leslie> So feeling “resistance” signals an opportunity for learning?

<Bob> Yes. Always.

<Leslie> So the better response is to pull back and to check assumptions and not to push forward and make the resistance greater or worse still break through the barrier of resistance, celebrate the victory, and then commit an inevitable and avoidable blunder – and then add insult to injury and blame someone else creating even more cynicism on the future.

<Bob> Yes. Well put.

<Leslie> Wow!  And that is why patience and persistence are necessary.  Not persistently pushing but persistently searching for the unconscious assumptions that underpin resistance; consistently using Reality as the arbiter;  and having enough patience to let Reality tell its own story.

<Bob> Yes. And having the patience and persistence to keep learning from our confusion and to keep learning how to explain what we have discovered better and better.

<Leslie> Thanks Bob. Once again you have  opened a new door for me.

<Bob> A door that was always there and yet hidden from view until it was illuminated with an example.

To begin have an end in mind – Steve Peak

My head is a buzzing this morning with poems by John Godfrey Saxe, Theory of Constraints, Six Thinking Hats®, managing transitions and discrete event simulations!

It is not because of the rather lovely bottle of red yesterday evening nor as a result of an episode of the hitchhikers guide to the galaxy but rather my start on the Foundations of Improvement Science in Healthcare course.

The Three Wins book that kicks off the course should be offered to all those folks who are trying to bring about improvements to patients but finding it frustrating and about to consider giving it up. You know who you are and I have been there on a few occasions myself. The book plots the journey of the vascular team at Good Hope Hospital who deliver some fantastic changes to improve the service to patients and in doing so achieve the Three Wins: quality, performance and motivation. John’s story fills your heart with joy!

So it is Saturday morning and sporting events are happening around me. I am delighted to have started my course and have an end in mind. My G-R-O-W outline is done and I have my Niggles that I will convert to NoNos and my NiceIfs that I want to end up as Nuggets. I have played the Post It® Note and Six Dice games and begun ‘learning’ the concepts behind improvement science that I know will complement any people skills I might possess. The human side of change, the key goals of quality and performance are all wrapped up together as we all know well and here it is becoming clearer how these things can and must be pulled off simultaneously.

I am excited about all this and having chatted to a cracking CEO leader yesterday I can see more and more clearly how his goals of deeper engagement and involvement with the hospitals teams, his desire to improvement the patient’s view of the services offered and also sorry to say this but how the money can be made to work harder can be delivered.

I have programmed some further time next week to hit the next stage of the course where the more technical bits get explained and illustrated using the exercises, examples and language that thus far are making this fun.

Next Friday sees the arrival of a friend from Australia who has not been seen in 10 years. The next blog might be interesting!

Steve Peak

Middle-Aware

line_figure_phone_400_wht_9858[Dring Dring]

<Bob> Hi Leslie, how are you today?

<Leslie> Really good thanks. We are making progress and it is really exciting to see tangible and measurable improvement in safety, delivery, quality and financial stability.

<Bob> That is good to hear. So what topic shall we explore today?

<Leslie> I would like to return to the topic of engagement.

<Bob> OK. I am sensing that you have a specific Niggle that you would like to share.

<Leslie> Yes.  Specifically it is engaging the Board.

<Bob> Ah ha. I wondered when we would get to that. Can you describe your Niggle?

<Leslie> Well, the feeling is fear and that follows from the risk of being identified as a trouble-maker which follows from exposing gaps in knowledge and understanding of seniors.

<Bob> Well put.  This is an expected hurdle that all Improvement Scientists have to learn to leap reliably. What is the barrier that you see?

<Leslie> That I do not know how to do it and I have seen a  lot of people try and commit career-suicide – like moths on a flame.

<Bob> OK – so it is a real fear based on real evidence. What methods did the “toasted moths” try?

<Leslie> Some got angry and blasted off angry send-to-all emails.  They just succeeded in identifying themselves as “terrorists” and were dismissed – politically and actually. Others channeled  their passion more effectively by heroic acts that held the system together for a while – and they succeeded in burning themselves out. The end result was the same: toasted!

<Bob> So with your understanding of design principles what does that say?

<Leslie> That the design of their engagement process is wrong.

<Bob> Wrong?

<Leslie> I mean “not fit for purpose”.

<Bob> And the difference is?

<Leslie> “Wrong” is a subjective judgement, “not fit for purpose” is an objective assessment.

<Bob> Yes. We need to be careful with words. So what is the “purpose”?

<Leslie> An organisation that is capable of consistently delivering improvement on all dimensions, safety, delivery, quality and affordability.

<Bob> Which requires?

<Leslie> All the parts working in synergy to a common purpose.

<Bob> So what are the parts?

<Leslie> The departments.

<Bob> They are the stages that the streams cross – they are parts of system structure. I am thinking more broadly.

<Leslie> The workers, the managers and the executives?

<Bob> Yes.  And how is that usually perceived?

<Leslie> As a power hierarchy.

<Bob> And do physical systems have power hierarchies?

<Leslie> No … they have components with different and complementary roles.

<Bob> So does that help?

<Leslie> Yes! To achieve synergy each component has to know its complementary role and be competent to do it.

<Bob> And each must understand the roles of the others,  respect the difference, and develop trust in their competence.

<Leslie> And the concepts of understanding, respect and trust appears again.

<Bob> Indeed.  They are always there in one form or another.

<Leslie> So as learning and improvement is a challenge then engagement is respectful challenge …

<Bob> … uh huh …

<Leslie> … and each part is different so requires a different form of respectful challenge?

<Bob> Yes. And with three parts there are six relationships between them – so six different ways of one part respectfully challenging another. Six different designs that have the same purpose but a different context.

<Leslie> Ah ha!  And if we do not use the context-dependent-fit-for-purpose-respectful-challenge-design we do not achieve our purpose?

<Bob> Correct. The principles of design are generic.

<Leslie> So what are the six designs?

<Bob> Let us explore three of them. First the context of a manager respectfully challenging a worker to improve.

<Leslie> That would require some form of training. Either the manager trains the worker or employs someone else to.

<Bob> Yes – and when might a manager delegate training?

<Leslie> When they do not have time to or do not know how to.

<Bob> Yes. So how would the flaw in that design be avoided?

<Leslie> By the manager maintaining their own know-how by doing enough training themselves and delegating the rest.

<Bob> Yup. Well done. OK let us consider a manager respectfully challenging other managers to improve.

<Leslie> I see what you mean. That is a completely different dynamic. The closest I can think of is a coaching arrangement.

<Bob> Yes. Coaching is quite different from training. It is more of a two-way relationship and I prefer to refer to it as “informal co-coaching” because both respectfully challenge each other in different ways; both share knowledge; and both learn and develop.

<Leslie> And that is what you are doing now?

<Bob> Yes. The only difference is that we have agreed a formal coaching contract. So what about a worker respectfully challenging a manager or a manager respectfully challenging an executive?

<Leslie>That is a very different dynamic. It is not training and it is not coaching.

<Bob> What other options are there?

<Leslie>Not formal coaching!  An executive is not going to ask a middle manager to coach them!

<Bob> You are right on both counts – so what is the essence of informal coaching?

<Leslie> An informal coach provides a different perspective and will say what they see if asked and will ask questions that help to illustrate alternative perspectives and offer evidence of alternative options. This is just well-structured, judgement-free feedback.

<Bob> Yes. We do it all the time. And we are often “coached” by those much younger than ourselves who have a more modern perspective. Our children for instance.

<Leslie> So the judgement free feedback metaphor is the one that a manager can use to engage an executive.

<Bob> Yes. And look at it from the perspective of the executive – they want feedback that can help them made wiser strategic decisions. That is their role. Boards are always asking for customer feedback, staff feedback and performance feedback.  They want to know the Nuggets, the Niggles, the Nice Ifs and the NoNos.  They just do not ask for it like that.

<Leslie> So they are no different from the rest of us?

<Bob> Not in respect of an insatiable appetite for unfiltered and undistorted feedback. What is different is their role. They are responsible for the strategic decisions – the ones that affect us all – so we can help ourselves by helping them make those decisions. A well-designed feedback model is fit-for-that-purpose.

<Leslie> And an Improvement Scientist needs to be able to do all three – training, coaching and communicating in a collaborative informal style. Is that leadership?

<Bob> I call it “middle-aware”.

<Leslie> It makes complete sense to me. There is a lot of new stuff here and I will need to reflect on it. Thank you once again for showing me a different perspective on the problem.

<Bob> I enjoyed it too – talking it through helps me to learn to explain it better – and I look forward to hearing the conclusions from your reflections because I know I will learn from that too.

Closing the Two Loops

Over the past few weeks I have been conducting an Improvement Science Experiment (ISE).  I do that a lot.  This one is a health improvement experiment. I do that a lot too.  Specifically – improving my own health. Ah! Not so diligent with that one.

The domain of health that I am focusing on is weight – for several reasons:
(1) because a stable weight that is within “healthy” limits is a good idea for many reasons and
(2) because weight is very easy to measure objectively and accurately.

But like most people I have constraints: motivation constraints, time constraints and money constraints.  What I need is a weight reduction design that requires no motivation, no time, and no money.  That sounds like a tough design challenge – so some consideration is needed.

Design starts with a specific purpose and a way of monitoring progress.  And I have a purpose – weight within acceptable limits; a method for monitoring progress – a dusty set of digital scales. What I need is a design for delivering the improvement and a method for maintaining it. That is the challenge.

So I need a tested design that will deliver the purpose.  I could invent something here but it is usually quicker to learn from others who have done it, or something very similar.  And there is lots of knowledge and experience out there.  And they fall into two broad schools – Eat Healthier or Exercise More and usually Both.

Eat Healthier is sold as  Eat Less of the Yummy Bad Stuff and more of the Yukky Good Stuff. It sounds like a Puritanical Policy and is not very motivating. So with zero motivation as  a constraint this is a problem.  And Yukky Good Stuff seems to come with a high price tag. So with zero budget as a constraint this is a problem too.

Exercise More is sold as Get off Your Bottom and Go for a Walk. It sounds like a Macho Man Mantra. Not very motivating either. It takes time to build up a “healthy” sweat and I have no desire to expose myself as a health-desperado by jogging around my locality in my moth-eaten track suit.  So with zero time as a constraint this is a problem. Gym subscriptions and the necessary hi-tech designer garb do not come cheap.  So with a zero budget constraint this is another problem.

So far all the conventional wisdom is failing to meet any of my design constraints. On all dimensions.

Oh dear!

The rhetoric is not working.  That packet of Chocolate Hob Nobs is calling to me from the cupboard. And I know I will feel better if I put them out of their misery. Just one will not do any harm. Yum Yum.  Arrrgh!!!  The Guilt. The Guilt.

OK – get a grip – time for Improvement Scientist to step in – we need some Science.

[Improvement Science hat on]

The physics and physiology are easy on this one:

(a) What we eat provides us with energy to do necessary stuff (keep warm, move about, think, etc). Food energy  is measured in “Cals”; work energy is measured in “Ergs”.
(b) If we eat more Cals than we burn as Ergs then the difference is stored for later – ultimately as blubber (=fat).
(c) There are four contributors to or weight: dry (bones and stuff), lean (muscles and glands of various sorts), fluid (blood, wee etc), and blubber (fat).
(d) The sum of the dry, lean, and fluids should be constant – we need them – we do not store energy there.
(e) The fat component varies. It is stored energy. Work-in-progress so to speak.
(f) One kilogram of blubber is equivalent to about 9000 Cals.
(g) An adult of average weight, composition, and activity uses between 2000 and 2500 Cals per day – just to stay at a stable weight.

These facts are all we need to build an energy flow model.

Food Cals = Energy In.
Work Ergs = Energy Out.
Difference between Energy In and Energy Out is converted to-and-from blubber at a rate of 1 gram per 9 Cal.
Some of our weight is the accumulated blubber – the accumulated difference between Cals-In and Ergs-Out

The Laws Of Physics are 100% Absolute and 0% Negotiable. The Behaviours of People are 100% Relative and 100% Negotiable.  Weight loss is more about behaviour. Habits. Lifestyle.

Bit more Science needed now:

Which foods have the Cals?

(1) Fat (9 Cal per gram)
(2) Carbs (4 Cal per gram)
(3) Protein (4 Cal per gram)
(4) Water, Vitamins, Minerals, Fibre, Air, Sunshine, Fags, Motivation (0 Cal per gram).

So how much of each do we get from the stuff we nosh?

It is easy enough to work out – but it is very tedious to do so.  This is how calorie counting weight loss diets work. You weigh everything that goes in, look up the Cal conversions per gram in a big book, do some maths and come up with a number.  That takes lots of time. Then you convert to points and engage in a pseudo-accounting game where you save points up and cash them in as an occasional cream cake.  Time is a constraint and Saving-the-Yummies-for-Later is not changing a habit – it is feeding it!

So it is just easier for me to know what a big bowel of tortilla chips translates to as Cals. Then I can make an informed choice. But I do not know that.

Why not?

Because I never invested time in learning.  Like everyone else I gossip, I guess, and I generalise.  I say “Yummy stuff is bad because it is Hi-Cal; Yukky stuff is good because it is Lo-Cal“.  And from this generalisation I conclude “Cutting Cals feels bad“. Which is a problem because my motivation is already rock bottom.  So I do nothing,  and my weight stays the same, and I still feel bad.

The Get-Thin-Quick industry knows this … so they use Shock Tactics to motivate us.  They scare us with stories of fat young people having heart attacks and dying wracked with regret. Those they leave behind are the real victims. The industry bludgeons us into fearful submission and into coughing up cash for their Get Thin Quick Panaceas.  Their real goal is the repeat work – the loyal customers. And using scare mongering and a few whale-to-waif conversions as rabble-rousing  zealots they cook up the ideal design to achieve that.  They know that, for most of us, as soon as the fear subsides, the will weakens, the chips are down (the neck), the blubber builds, and we are back with our heads hung low and our wallets open.

I have no motivation – that is a constraint.  So flogging an over-weight and under-motivated middle-aged curmudgeon will only get a more over-weight, ego-bruised-and-depressed, middle-aged cynic. I may even seek solace in the Chocolate Hob Nob jar.

Nah! I need a better design.

[Improvement Scientist hat back on]

First Rule of Improvement – Check the Assumptions.

Assumption 1:
Yummy => Hi-Cal => Bad for Health
Yukky => Lo-Cal => Good for Health

It turns out this is a gross over-simplification.  Lots of Yummy things are Lo-Cal; lots of Yukky things are Hi-Cal. Yummy and Yukky are subjective. Cals are not.

OK – that knowledge is really useful because if I know which-is-which then I can made wiser decisions. I can do swaps so that the Yummy Score goes higher and the Cals Score goes lower.  That sounds more like it! My Motiv-o-Meter twitches.

Assumption 2:
Hi-Cal => Cheap => Good for Wealth
Lo-Cal => Expensive => Bad for Wealth

This is a gross over-simplification too. Lots of Expensive things are Hi-Cal; lots of Cheap things are Lo-Cal.

OK so what about the combination?

Bingo!  There are lots of Yummy+Cheap+Lo-Cal things out there !  So my process is to swap the Lose-Lose-Lose for the Win-Win-Win. I feel a motivation surge. The needle on my Motiv-o-Meter definitely moved this time.

But how much? And for how long? And how will I know if it is working?

[Improvement Science hat back on]

Second Rule of Improvement Science – Work from the Purpose

We need an output  specification.  What weight reduction in what time-scale?

OK – I work out my target weight – using something called the BMI (body mass index) which uses my height and a recommended healthy BMI range to give a target weight range. I plumb for 75 kg – not just “10% reduction” – I need an absolute goal. (PS. The BMI chart I used is at the end of the blog).

OK – I now I need a time-scale – and I know that motivation theory shows that if significant improvement is not seen within 15 repetitions of a behaviour change then it does not stick. It will not become a new habit. I need immediate feedback. I need to see a significant weight reduction within two weeks. I need a quick win to avoid eroding my fragile motivation.  And so long as a get that I will keep going. And how long to get to target weight?  One or two lunar cycles feels about right. Let us compromise on six weeks.

And what is a “significant improvement”?

Ah ha! Now I am on familiar ground – I have a tool for answering that question – a system behaviour chart (SBC).  I need to measure my weight and plot it on a time-series chart using BaseLine.  And I know that I need 9 points to show a significant shift, and I know I must not introduce variation into my measurements. So I do four things – I ensure my scales have high enough precision (+/- 0.1 kg); I do the weighing under standard conditions (same time of day and same state of dress);  I weigh myself every day or every other day; and I plot-the-dots.

OK – how am I doing on my design checklist?
1. Purpose – check
2. Process – check
3. Progress – check

Anything missing?

Yes – I need to measure the energy input – the Cals per day going in – but I need a easy, quick and low-cost way of doing it.

Time for some brainstorming. What about an App? That fancy new smartphone can earn its living for a change. Yup – lots of free ones for tracking Cals.  Choose one. Works OK. Another flick on the Motiv-o-Meter needle.

OK – next bit of the jigsaw. What is my internal process metric (IPM)?  How many fewer Cals per day on average do I need to achieve … quick bit of beer-mat maths … that many kg reduction times Cal per kg of blubber divided by 6 weeks gives  … 1300 Cals per day less than now (on average).  So what is my daily Cals input now?  I dunno. I do not have a baseline.  And I do not fancy measuring it for a couple of weeks to get one. My feeble motivation will not last that long. I need action. I need a quick win.

OK – I need to approach this a different way.  What if I just change the input to more Yummy+Cheap+Lo-Cal stuff and less Yummy+Cheap+Hi-Cal stuff and just measure what happens.  What if I just do what I feel able to? I can measure the input Cals accurately enough and also the output weight. My curiosity is now pricked too and my Inner Nerd starts to take notice and chips in “You can work out the rest from that. It is a simple S&F model” . Thanks Inner Nerd – you do come in handy occasionally. My Motiv-o-Meter is now in the green – enough emotional fuel for a decision and some action.

I have all the bits of the design jigsaw – Purpose, Process, Progress and Pieces.  Studying, and Planning over – time for Doing.

So what happened?

It is an ongoing experiment – but so far it has gone exactly as the design dictated (and the nerdy S&F model predicted).

And the experience has helped me move some Get-Thin-Quick mantras to the rubbish bin.

I have counted nine so far:

Mantra 1. Do not weight yourself every day –  rubbish – weigh yourself every day using a consistent method and plot the dots.
Mantra 2. Focus on the fatrubbish – it is Cals that count whatever the source – fat, carbs, protein (and alcohol).
Mantra 3. Five fresh fruit and veg a dayrubbish – they are just Hi-Cost+Low-Cal stocking fillers.
Mantra 4. Only eat balanced mealsrubbish –  it is OK to increase protein and reduce both carbs and fat.
Mantra 5. It costs money to get healthyrubbish – it is possible to reduce cost by switching to Yummy+Cheap+Lo-Cal stuff.
Mantra 6. Cholesterol is badrubbish – we make more cholesterol than we eat – just stay inside a recommended range.
Mantra 7. Give up all alcohol – rubbish – just be sensible – just stay inside a recommended range.
Mantra 8. Burn the fat with exercise rubbish – this is scraping-the-burnt-toast thinking – less Cals in first.
Mantra 9. Eat less every dayrubbish – it is OK to have Lo-Cal days and OK-Cal days – it is the average Cals that count.

And the thing that has made the biggest difference is the App.  Just being able to quickly look up the Cals in a “Waitrose Potato Croquette” when-ever and where-ever I want to is what I really needed. I have quickly learned what-is-in-what and that helps me make “Do I need that Chocolate Hob-Nob or not?” decisions on the fly. One tiny, insignificant Chocolate Hob-Nob = 95 Cals. Ouch! Maybe not.

I have been surprised by what I have learned. I now know that before I was making lots of unwise decisions based on completely wrong assumptions. Doh!

The other thing that has helped me build motivation is seeing the effect of those wiser design decisions translated into a tangible improvement – and quickly!  With a low-variation and high-precision weight measurement protocol I can actually see the effect of the Cals ingested yesterday on the Weight recorded today.  Our bodies obey the Laws of Physics. We are what we eat.

So what is the lesson to take away?

That there are two feedback loops that need to be included in all Improvement Science challenges – and both loops need to be closed so information flows if the Improvement exercise is to succeed and to sustain.

First the Rhetoric Feedback loop – where new, specific, knowledge replaces old, generic gossip. We want to expose the myths and mantras and reveal novel options.  Challenge assumptions with scientifically valid evidence. If you do not know then look it up.

Second the Reality Feedback loop – where measured outcomes verifies the wisdom of the decision – the intended purpose was achieved.  Measure the input, internal and output metrics and plot all as time-series charts. Seeing is believing.

So the design challenge has been achieved and with no motivation, no time and no budget.

Now where is that packet of Chocolate Hob Nobs. I think I have earned one. Yum yum.

[PS. This is not a new idea – it is called “double loop learning“.  Do not know of it? Worth looking it up?]


bmi_chart

Burn-and-Scrape


telephone_ringing_300_wht_14975[Ring Ring]

<Bob> Hi Leslie how are you to today?

<Leslie> I am good thanks Bob and looking forward to today’s session. What is the topic?

<Bob> We will use your Niggle-o-Gram® to choose something. What is top of the list?

<Leslie> Let me see.  We have done “Engagement” and “Productivity” so it looks like “Near-Misses” is next.

<Bob> OK. That is an excellent topic. What is the specific Niggle?

<Leslie> “We feel scared when we have a safety near-miss because we know that there is a catastrophe waiting to happen.”

<Bob> OK so the Purpose is to have a system that we can trust not to generate avoidable harm. Is that OK?

<Leslie> Yes – well put. When I ask myself the purpose question I got a “do” answer rather than a “have” one. The word trust is key too.

<Bob> OK – what is the current safety design used in your organisation?

<Leslie> We have a computer system for reporting near misses – but it does not deliver the purpose above. If the issue is ranked as low harm it is just counted, if medium harm then it may be mentioned in a report, and if serious harm then all hell breaks loose and there is a root cause investigation conducted by a committee that usually results in a new “you must do this extra check” policy.

<Bob> Ah! The Burn-and-Scrape model.

<Leslie>Pardon? What was that? Our Governance Department call it the Swiss Cheese model.

<Bob> Burn-and-Scrape is where we wait for something to go wrong – we burn the toast – and then we attempt to fix it – we scrape the burnt toast to make it look better. It still tastes burnt though and badly burnt toast is not salvageable.

<Leslie>Yes! That is exactly what happens all the time – most issues never get reported – we just “scrape the burnt toast” at all levels.

fire_blaze_s_150_clr_618 fire_blaze_h_150_clr_671 fire_blaze_n_150_clr_674<Bob> One flaw with the Burn-and-Scrape design is that harm has to happen for the design to work.

It is all reactive.

Another design flaw is that it focuses attention on the serious harm first – avoidable mortality for example.  Counting the extra body bags completely misses the purpose.  Avoidable death means avoidably shortened lifetime.  Avoidable non-fatal will also shorten lifetime – and it is even harder to measure.  Just consider the cumulative effect of all that non-fatal life-shortening avoidable-but-ignored harm?

Most of the reasons that we live longer today is because we have removed a lot of lifetime shortening hazards – like infectious disease and severe malnutrition.

Take health care as an example – accurately measuring avoidable mortality in an inherently high-risk system is rather difficult.  And to conclude “no action needed” from “no statistically significant difference in mortality between us and the global average” is invalid and it leads to a complacent delusion that what we have is good enough.  When it comes to harm it is never “good enough”.

<Leslie> But we do not have the resources to investigate the thousands of cases of minor harm – we have to concentrate on the biggies.

<Bob> And do the near misses keep happening?

<Leslie> Yes – that is why they are top rank  on the Niggle-o-Gram®.

<Bob> So the Burn-and-Scrape design is not fit-for-purpose.

<Leslie> So it seems. But what is the alternative? If there was one we would be using it – surely?

<Bob> Look back Leslie. How many of the Improvement Science methods that you have already learned are business-as-usual?

<Leslie> Good point. Almost none.

<Bob> And do they work?

<Leslie> You betcha!

<Bob> This is another example.  It is possible to design systems to be safe – so the frequent near misses become rare events.

<Leslie> Is it?  Wow! That know-how would be really useful to have. Can you teach me?

<Bob> Yes. First we need to explore what the benefits would be.

<Leslie> OK – well first there would be no avoidable serious harm and we could trust in the safety of our system – which is the purpose.

<Bob> Yes …. and?

<Leslie> And … all the effort, time and cost spent “scraping the burnt toast” would be released.

<Bob> Yes …. and?

<Leslie> The safer-by-design processes would be quicker and smoother, a more enjoyable experience for both customers and suppliers, and probably less expensive as well!

<Bob> Yes. So what does that all add up to?

<Leslie> A win-win-win-win outcome!

<Bob> Indeed. So a one-off investment of effort, time and money in learning Safety-by-Design methods would appear to be a wise business decision.

<Leslie> Yes indeed!  When do we start?

<Bob> We have already started.


For a real-world example of this approach delivering a significant and sustained improvement in safety click here.

The ah ha moments in life – Steve Peak

There I was 6 days ago quietly minding mine own business observing a session at the Keele University Clinical Management & Leadership course & now I am writing my first ever blog! How did that happen? The simple truth is that I had one of those OMG or ah ha moments when after years of attempting to tackle difficult and challenging operational matters there was an approach to delivery that seemed to have the potential to bring order, discipline and a sense of hope. I can pin this on an introduction to improvement science led by Simon Dodds. I went home that evening thinking I must have more of this and need to understand the foundations of putting improvement science into practice. I had already committed myself and ‘paid’ Simon a compliment by approaching him after his session and blurting out “where do I learn this stuff”?

In my career to date I have undertaken many operational roles & spent 10 years at Board level including stints as CEO. What this tells you is that I have observed hospitals, how they function or don’t as the case may be and on a number of occasions have failed to make a difference that is sustainable because my tool kit wasn’t up to it. So 6 days on from the ah ha moment and a couple of swift drinks at a hostelry in Warwickshire I have enrolled on the FISH (Foundations in Improvement Science in Healthcare) course, am writing this blog and looking forward to finally having an approach, alongside my other leadership training, to help me resolve the myriad of operational challenges that beset our great NHS. My big hope is to become a practitioner capable of sharing the approach of improvement science to as wider audience as possible. The 24 years of experience in operational leadership in the NHS tells me that very few of us have these skills that would make a very significant difference to the quality, safety, people engagement & efficiency of the services we all want to be proud of.

So I am going to write my thoughts down as I go along my FISH course so that in some small way I might influence others to want to know more. I might even become a better blogger as a result!

Feel free to comment below or email me on steven.peak@sky.com if you want to comment or question my wave of enthusiasm!

Invisible Design

Improvement Science is all about making some-thing better in some-way by some-means.

There are lots of things that might be improved – almost everything in fact.

There are lots of ways that those things might be improved. If it was a process we might improve safety, quality, delivery, and productivity. If it was a product we might improve reliability, usability, durability and affordability.

There are lots of means by which those desirable improvements might be achieved – lots of different designs.

Multiply that lot together and you get a very big number of options – so it is no wonder we get stuck in the “what to do first?” decision process.

So how do we approach this problem currently?

We use our intuition.

Intuition steers us to the obvious – hence the phrase intuitively obvious. Which means what looks to our minds-eye to be a good option.And that is OK. It is usually a lot better than guessing (but not always).

However, the problem using “intuitively obvious” is that we end up with mediocrity. We get “about average”. We get “OKish”.  We get “satisfactory”. We get “what we expected”. We get “same as always”. We do not get “significantly better-than-average’. We do not get “reliably good”. We do not get improvement. And we do not because anyone and everyone can do the “intuitively obvious” stuff.

To improve we need a better-than-average functional design. We need a Reliably Good Design. And that is invisible.

By “invisible” I mean not immediately obvious to our conscious awareness.  We do not notice good functional design because it does not get in the way of achieving our intention.  It does not trip us up.

We notice poor functional design because it trips us up. It traps us into making mistakes. It wastes out time. It fails to meet our expectation. And we are left feeling disappointed, irritated, and anxious. We feel Niggled.

We also notice exceptional design – because it works far better than we expected. We are surprised and we are delighted.

We do not notice Good Design because it just works. But there is a trap here. And that is we habitually link expectation to price.  We get what we paid for.  Higher cost => Better design => Higher expectation.

So we take good enough design for granted. And when we take stuff for granted we are on the slippery slope to losing it. As soon as something becomes invisible it is at risk of being discounted and deleted.

If we combine these two aspects of “invisible design” we arrive at an interesting conclusion.

To get from Poor Design to OK Design and then Good Design we have to think “counter-intuitively”.  We have to think “outside the box”. We have to “think laterally”.

And that is not a natural way for us to think. Not for individuals and not for teams. To get improvement we need to learn a method of how to counter our habit of thinking intuitively and we need to practice the method so that we can do it when we need to. When we want to need to improve.

To illustrate what I mean let us consider an real example.

Suppose we have 26 cards laid out in a row on a table; each card has a number on it; and our task is to sort the cards into ascending order. The constraint is that we can only move cards by swapping them.  How do we go about doing it?

There are many sorting designs that could achieve the intended purpose – so how do we choose one?

One criteria might be the time it takes to achieve the result. The quicker the better.

One criteria might be the difficulty of the method we use to achieve the result. The easier the better.

When individuals are given this task they usually do something like “scan the cards for the smallest and swap it with the first from the left, then repeat for the second from the left, and so on until we have sorted all the cards“.

This card-sorting-design is fit for purpose.  It is intuitively obvious, it is easy to explain, it is easy to teach and it is easy to do. But is it the quickest?

The answer is NO. Not by a long chalk.  For 26 randomly mixed up cards it will take about 3 minutes if we scan at a rate of 2 per second. If we have 52 cards it will take us about 12 minutes. Four times as long. Using this intuitively obvious design the time taken grows with the square of the number of cards that need sorting.

In reality there are much quicker designs and for this type of task one of the quickest is called Quicksort. It is not intuitively obvious though, it is not easy to describe, but it is easy to do – we just follow the Quicksort Policy.  (For those who are curious you can read about the method here and make up your own mind about how “intuitively obvious” it is.  Quicksort was not invented until 1960 so given that sorting stuff is not a new requirement, it clearly was not obvious for a few thousand years).

Using Quicksort to sort our 52 cards would take less than 3 minutes! That is a 400% improvement in productivity when we flip from an intuitive to a counter-intuitive design.  And Quicksort was not chance discovery – it was deliberately designed to address a specific sorting problem – and it was designed using robust design principles.

So our natural intuition tends to lead us to solutions that are “effective, easy and inefficient” – and that means expensive in terms of use of resources.

This has an important conclusion – if we are all is given the same improvement assignment and we all used our intuition to solve it then we will get similar and mediocre results.  It will feel OK and it will appear obvious but there will be no improvement.

We then conclude that “OK, this is the best we can expect.” which is intuitively obvious, logically invalid, and wrong. It is that sort of intuitive thinking trap that blocked us from inventing Quicksort for thousands of years.

And remember, to decide what is “best” we have to explore all options exhaustively – both intuitively obvious and counter-intuitively obscure. That impossible in practice.  This is why “best” and “optimum” are generally unhelpful concepts in the context of improvement science.

So how do we improve when good design is so counter-intuitive?

The answer is that we learn a set of “good designs” from a teacher who knows and understands them, and then we prove them to ourselves in practice. We leverage the “obvious in retrospect” effect. And we practice until we understand. And then we then teach others.

So if we wanted to improve the productivity of our designed-by-intuition card sorting process we could:
(a) consult a known list of proven sorting algorithms,
(b) choose one that meets our purpose (our design specification),
(c) compare the measured performance of our current “intuitively obvious” design with the predicted performance of that “counter-intuitively obscure” design,
(d) set about planning how to implement the higher performance design – possibly as a pilot first to confirm the prediction, reassure the fence-sitters, satisfy the skeptics, and silence the cynics.

So if these proven good designs are counter-intuitive then how do we get them?

The simplest and quickest way is to learn from people who already know and understand them. If we adopt the “not invented by us” attitude and attempt to re-invent the wheel then we may get lucky and re-discover a well-known design, we might even discover a novel design; but we are much more likely to waste a lot of time and end up no better off, or worse. This is called “meddling” and is driven by a combination of ignorance and arrogance.

So who are these people who know and understand good design?

They are called Improvement Scientists – and they have learned one-way-or-another what a good design looks like. That lalso means they can see poor design where others see only-possible design.

That difference of perception creates a lot of tension.

The challenge that Improvement Scientists face is explaining how counter-intuitive good design works: especially to highly intelligent, skeptical people who habitually think intuitively. They are called Academics.  And it is a pointless exercise trying to convince them using rhetoric.

Instead our Improvement Scientists side-steps the “theoretical discussion” and the “cynical discounting” by pragmatically demonstrating the measured effect of good design in practice. They use reality to make the case for good design – not rhetoric.

Improvement Scientists are Pragmatists.

And because they have learned how counter-intuitive good design is to the novice – how invisible it is to their intuition – then they are also Voracious Learners. They have enough humility to see themselves as Eternal Novices and enough confidence to be selective students.  They will actively seek learning from those who can demonstrate the “what” and explain the “how”.  They know and understand it is a much quicker and easier way to improve their knowledge and understanding.  It is Good Design.

 

“When the Student is ready …”

Improvement Science is not a new idea.  The principles are enduring and can be traced back as far as recorded memory – for Millennia. This means that there is a deep well of ancient wisdom that we can draw from.  Much of this wisdom is condensed into short sayings which capture a fundamental principle or essence.

One such saying is attributed to Zen Buddhism and goes “When the Student is ready the Teacher will appear.

This captures the essence of a paradigm shift – a term made popular by Thomas S Kuhn in his seminal 1962 book – The Structure of Scientific Revolutions.  It was written just over 50 years ago.

System-wide change takes time and the first stage is the gradual build up of dissatisfaction with the current paradigm.  The usual reaction from the Guardians of the Status Quo is to silence the first voices of dissent, often brutally. As the pressure grows there are too many voices to silence individually so more repressive Policies and Policing are introduced. This works for a while but does not dissolve the drivers of dissatisfaction. The pressure builds and the cracks start to appear.  This is a dangerous phase.

There are three ways out: repression, revolution, and evolution.  The last one is the preferred option – and it requires effective leadership to achieve.  Effective leaders are both Teachers and Students. Knowledge and understanding flow through them as they acquire Wisdom.

The first essence of the message is that the solutions to the problems are already known – but the reason they are not widely known and used is our natural affection for the familiar and our distrust of the unfamiliar.  If we are comfortable then why change?

It is only when we are uncomfortable enough that we will start to look for ways to regain comfort – physical and psychological.

The second essence of the message is that to change we need to learn something and that means we have to become Students, and to seek the guidance of a Teacher. Someone who understands the problems, their root causes, the solutions, the benefits and most importantly – how to disseminate that knowledge and understanding.  A Teacher that can show us how not just tell us what.

The third essence of the message is that the Students become Teachers themselves as they put into practice what they have learned and prove to themselves that it works, and it is workable.  The new understanding flows along the Optimism-Skepticism gradient until the Tipping Point is reached.  It is then unstoppable and the Paradigm flips. Often remarkably quickly.

The risk is that change means opportunity and there are many who can sniff out an opportunity to cash in on the change chaos. They are the purveyors of Snakeoil – and they prey on the dissatisfied and desperate.

So how does a Student know a True-Teacher from a Snakeoil Salesperson?

Simple – the genuine Teacher will be able to show a portfolio of successes and delighted ex-students; will be able to explain and demonstrate how they were both achieved; will be willing to share their knowledge; and will respectfully decline to teach someone who they feel is not yet ready to learn.

The Green Shoots of Improvement

one_on_one_challenge_150_wht_8069Improvement is a form of innovation and it obeys the same Laws of Innovation.

One of these Laws describes how innovation diffuses and it is called Rogers’ Law.

The principle is that innovations diffuse according to two opposing forces – the Force of Optimism and the Force of Skepticism.  As individuals we differ in our balance of these two preferences.

When we are in status quo the two forces are exactly balanced.

As the Force of Optimism builds (usually from increasing dissatisfaction with the status quo driving Necessity-the-Mother-of-Invention) then the Force of Skepticism tends to build too. It feels like being in a vice that is slowly closing. The emotional stress builds, the strain starts to show and the cracks begin to appear.  Sometimes the Optimism jaw of the vice shatters first, sometimes the Skepticism jaw does – either way the pent-up-tension is relieved. At least for a while.

The way to avoid the Vice is to align the forces of Optimism and Skepticism so that they both pull towards the common goal, the common purpose, the common vision.  And there always is one. People want a win-win-win outcome, they vary in daring to dream that it is possible. It is.

The importance of pull is critical. When we have push forces and a common goal we do get movement – but there is a danger – because things can veer out of control quickly.  Pull is much easier to steer and control than push.  We all know this from our experience of the real world.

And When the status quo starts to move in the direction of the common vision we are seeing tangible evidence of the Green Shoots of Improvement breaking through the surface into our conscious awareness.  Small signs first, tender green shoots, often invisible among the overgrowth, dead wood and weeds.

Sometimes the improvement is a reduction of the stuff we do not want – and that can be really difficult to detect if it is gradual because we adapt quickly and do not notice diffuse, slow changes.

We can detect the change by recording how it feels now then reviewing our records later (very few of us do that – very few of us keep a personal reflective journal). We can also detect change by comparing ourselves with others – but that is a minefield of hidden traps and is much less reliable (but we do that all the time!).

Improvement scientists prepare the Soil-of-Change, sow the Seeds of Innovation, and wait for the Spring to arrive.  As the soil thaws (the burning platform of a crisis may provide some energy for this) some of the Seeds will germinate and start to grow.  They root themselves in past reality and they shoot for the future rhetoric.  But they have a finite fuel store for growth – they need to get to the surface and to sunlight before their stored energy runs out. The preparation, planting and timing are all critical.

plant_growing_anim_150_wht_9902And when the Green Shoots of Improvement appear the Improvement Scientist switches role from Germinator to Grower – providing the seedlings with emotional sunshine in the form of positive feedback, encouragement, essential training, and guidance.  The Grower also has to provide protection from toxic threats that can easily kill a tender improvement seedling – the sources of Cynicide that are always present. The disrespectful sneers of “That will never last!” and “You are wasting your time – nothing good lasts long around here!”

The Improvement Scientist must facilitate harnessing the other parts of the system so that they all pull in the direction of the common vision – at least to some degree.  And the other parts add up to about 85% of it so they collectively they have enough muscle to create movement in the direction of the shared vision. If they are aligned.

And each other part has a different, significant and essential role.

The Disruptive Innovators provide the new ideas – they are always a challenge because they are always questioning “Why do we do it that way?” “What if we did it differently?” “How could we change?”  We do not want too many disruptive innovators because they are – disruptive.  Frustrated disruptive innovations can easily flip to being Cynics – so it is wise not to ignore them.

The Early Adopters provide the filter – they test the new ideas; they reject the ones that do not work; and they shape the ones that do. They provide the robust evidence of possibility. We need more Adopters than Innovators because lots of the ideas do not germinate. Duff seed or hostile soil – it does not matter which.  We want Green Shoots of Improvement.

The Majority provide the route to sharing the Adopter-Endorsed ideas, the Green Shoots of Improvement. They will sit on the fence, consider the options, comment, gossip, listen, ponder and eventually they will commit and change. The Early Majority earlier and the Late Majority later. The Late Majority are also known as the Skeptics. They are willing to be convinced but they need the most evidence. They are most risk-averse and for that reason they are really useful – because they can help guide the Shoots of  Improvement around the Traps. They will help if asked and given a clear role – “Tell us if you see gaps and risks and tell us why so that we can avoid them at the design and development stage”.  And you can tell if they are a True Skeptic or a Cynic-in-Skeptic clothing – because the Cynics will decline to help saying that they are too busy.

The last group, the Cynics, are a threat to significant and sustained improvement. And they can be managed using one or more the these four tactics:

1. Ignore them. This has the advantage of not wasting time but it tends to enrage them and they get noisier and more toxic.
2. Isolate them. This is done by establishing peer group ground rules that are is based on Respectful Challenge.
3. Remove them. This needs senior intervention and a cast-iron case with ample evidence of bad behaviour. Last resort.
4. Engage them. This is the best option if it can be achieved – invite the Cynics to be Skeptics. The choice is theirs.

It is surprising how much improvement follows from just turning blocking some of the sources of Cynicide!

growing_blue_vine_dissolve_150_wht_244So the take home message is a positive one:

  • Look for the Green Shoots of Improvement,
  • Celebrate every one you find,
  • Nurture and Protect them

and they will grow bigger and stronger and one day will flower, fruit and create their own Seeds of Innovation.

The Tyranny of Choice

[Ding-a-Ling]
Bob’s new all-singing-and-dancing touchscreen phone pronounced the arrival of an email from an Improvement Science apprentice. This was always an opportunity for learning so he swiped the flashing icon and read the email. It was from Leslie.

<Leslie>Hi Bob, I have come across a new challenge that I never thought I would see – the team that I am working with are generating so many improvement-by-design ideas that we cannot decide what to try. Can you help?

Bob thumbed a reply immediately:
<Bob>Ah ha! The Tyranny of Choice challenge. Yes, I believe I can help. I am free to talk now if you are.

[“You have a call from Leslie”]
Bob’s new all-singing-and-dancing touchscreen phone said that it was Leslie on the line – (it actually said it in the synthetic robot voice that Bob had set as the default).

<Bob>Hello Leslie.

<Leslie>Hi Bob, thank you for replying so quickly. I gather that you have encountered this challenge before?

<Bob>Yes. It usually appears when a team are nearing the end of a bumpy ride on the Nerve Curve and are starting to see new possibilities that previously were there but hidden.

<Leslie>That is just where we are. The problem is we have flipped from no options to so many we cannot decide what to do.

<Bob>It is often assumed that choice is a good thing, but you can have too much of a good thing. Many studies have shown that when the number of innovative choices are limited then people are more likely to make a decision and actually do something. As the number of choices increase it gets much harder to choose so we default to the more comfortable and familiar status quo. We avoid making a decision and we do nothing. That is the Tyranny of Choice.

<Leslie>Yes, that is just how it feels. Paralyzed by indecision. So how do we get past this barrier?

<Bob>The same way we get past all barriers. We step back,  broaden our situational awareness and list all the obvious things and then consider doing exactly the opposite of what out intuition tells us. We just follow the tried-and-tested 6M Design script.

<Leslie>Arrgh! Yes, of course. We start with a 4N Chart.

<Bob>Yes, and specifically we start with the Nuggets.  We look for what is working despite the odds. The positive deviants. Who do you know is decisive when faced with a host of confusing and conflicting options? Not tyrannized by choice.

<Leslie>Other than you?

<Bob>It does not matter who. How do they do it?

<Leslie>Well – “they” use a special sort of map that I confess I have not mastered yet – the Right-2-Left Map.

<Bob>Yes, an effective way to avoid getting lost in the Labyrinth of Options. What else?

<Leslie>“They” know what the critical steps are and “they” give clear step-by-step guidance of what to do to complete them.

<Bob>This is called “story-boarding”.  It is rather like sketching each scene of a play – then practicing each scene script individually until they are second nature and ready when needed.

<Leslie>That is just like what the emergency medical teams do. They have scripts that they use for emergent situations where it is dangerous to try to plan what to do in the moment.  They call them “care bundles”. It avoids a lot of time-wasting, debate, prevarication and the evidence shows that it delivers better outcomes and saves lives.

<Bob>In an emergency situation the natural feeling of fear creates the emotional drive to act; but without a well-designed and fully-tested script the same fear can paralyze the decision process. It is the rabbit-in-the-headlights effect.  When the feeling of urgency is less a different approach is needed to engage the emotional-power-train.

<Leslie>Do you mean build engagement?

<Bob>Yes, and how do we do that?

<Leslie>We use a combination of subjective stories and objective evidence – heart stuff and head stuff. It is a very effective combination to break through the Carapace of Complacency as you call it. I have seen that work really well in practice.

<Bob>And the 4N Chart comes in handy here again because it helps us see the emotional-terrain in perspective and to align us in moving away from the Niggles towards the NiceIfs while avoiding the NoNos and leveraging the Nuggets.

<Leslie>Yes! I have seen that too. But what do we do when we are in new territory; when we are faced with a swarm of novel options; when we have no pre-designed scripts to help us?

<Bob>We use a meta-script?

<Leslie>A what?

<Bob>A meta-script is one that we use to design a novel action script when we need it.

<Leslie>You mean a single method for creating a plan that we are confident will work?

<Bob>Yes.

<Leslie>That is what the Right-2-Left Map is!

<Bob>Yes.

<Leslie>So the Tyranny of Choice is the result of our habitual Left-2-Right thinking.

<Bob>Yes.

<Leslie>And when the future choices we see are also shrouded in ambiguity it is even harder to make a decision!

<Bob>Yes. We cannot see past the barrier of uncertainty – so we stop and debate because it feels safer.

<Leslie>Which is why so many really clever people seem get stuck in the paralysis of analysis and valueless discussion.

<Bob>Yes.

<Leslie>So all we need to do is switch to the counter-intuitive Right-2-Left thinking and the path becomes clear?

<Bob>Not quite.  The choices become a lot easier so the Tyranny of Choice disappears. We still have choices. There are still many possible paths. But it does not matter which we choose because they all lead to the common goal.

<Leslie>Thank you Bob. I am going to have to mull this one over for a while – red wine may help.

<Bob>Yes – mulled wine is a favorite of mine too. Ching-ching!

Do Not Give Up Too Soon

clock_hands_spinning_import_150_wht_3149Tangible improvement takes time. Sometimes it takes a long time.

The more fundamental the improvement the more people are affected. The more people involved the greater the psychological inertia. The greater the resistance the longer it takes to show tangible effects.

The advantage of deep-level improvement is that the cumulative benefit is greater – the risk is that the impatient Improvementologist may give up too early – sometimes just before the benefit becomes obvious to all.

The seeds of change need time to germinate and to grow – and not all good ideas will germinate. The green shoots of innovation do not emerge immediately – there is often a long lag and little tangible evidence for a long time.

This inevitable  delay is a source of frustration, and the impatient innovator can unwittingly undo their good work.  By pushing too hard they can drag a failure from the jaws of success.

Q: So how do we avoid this trap?

The trick is to understand the effect of the change on the system.  This means knowing where it falls on our Influence Map that is marked with the Circles of Control, Influence and Concern.

Our Circle of Concern includes all those things that we are aware of that present a threat to our future survival – such as a chunk of high-velocity space rock smashing into the Earth and wiping us all out in a matter of milliseconds. Gulp! Very unlikely but not impossible.

Some concerns are less dramatic – such as global warming – and collectively we may have more influence over changing that. But not individually.

Our Circle of Influence lies between the limit of our individual control and the limit of our collective control. This a broad scope because “collective” can mean two, twenty, two hundred, two thousand, two million, two billion and so on.

Making significant improvements is usually a Circle of Influence challenge and only collectively can we make a difference.  But to deliver improvement at this level we have to influence others to change their knowledge, understanding, attitudes, beliefs and behaviour. That is not easy and that is not quick. It is possible though – with passion, plausibility, persistence, patience – and an effective process.

It is here that we can become impatient and frustrated and are at risk of giving up too soon – and our temperaments influence the risk. Idealists are impatient for fundamental change. Rationals, Guardians and Artisans do not feel the same pain – and it is a rich source of conflict.

So if we need to see tangible results quickly then we have to focus closer to home. We have to work inside our Circle of Individual Influence and inside our Circle of Control.  The scope of individual influence varies from person-to-person but our Circle of Control is the same for all of us: the outer limit is our skin.  We all choose our behaviour and it is that which influences others: for better or for worse.  It is not what we think it is what we do. We cannot read or control each others minds. We can all choose our attitudes and our actions.

So if we want to see tangible improvement quickly then we must limit the scope of our action to our Circle of Individual Influence and get started.  We do what we can and as soon as we can.

Choosing what to do and what not do requires wisdom. That takes time to develop too.


Making an impact outside the limit of our Circle of Individual Influence is more difficult because it requires influencing many other people.

So it is especially rewarding for to see examples of how individual passion, persistence and patience have led to profound collective improvement.  It proves that it is still possible. It provides inspiration and encouragement for others.

One example is the recently published Health Foundation Quality, Cost and Flow Report.

This was a three-year experiment to test if the theory, techniques and tools of Improvement Science work in healthcare: specifically in two large UK acute hospitals – Sheffield and Warwick.

The results showed that Improvement Science does indeed work in healthcare and it worked for tough problems that were believed to be very difficult if not impossible to solve. That is very good news for everyone – patients and practitioners.

But the results have taken some time to appear in published form – so it is really good news to report that the green shoots of improvement are now there for all to see.

The case studies provide hard evidence that win-win-win outcomes are possible and achievable in the NHS.

The Impossibility Hypothesis has been disproved. The cynics can step off the bus. The skeptics have their evidence and can now become adopters.

And the report offers a lot of detail on how to do it including two references that are available here:

  1. A Recipe for Improvement PIE
  2. A Study of Productivity Improvement Tactics using a Two-Stream Production System Model

These references both describe the fundamentals of how to align financial improvement with quality and delivery improvement to achieve the elusive win-win-win outcome.

A previously invisible door has opened to reveal a new Land of Opportunity. A land inhabited by Improvementologists who mark the path to learning and applying this new knowledge and understanding.

There are many who do not know what to do to solve the current crisis in healthcare – they now have a new vista to explore.

Do not give up too soon –  there is a light at the end of the dark tunnel.

And to get there safely and quickly we just need to learn and apply the Foundations of Improvement Science in Healthcare – and we first learn to FISH in our own ponds first.

fish

Burn Your Bridges and Boats

burn_your_boatsThere are many stories from history on the theme of famous leaders symbolically burning bridges and boats.

They do this because they know that when they have no way back to the past then they are forced to face the future.

When we have no run-away option we have to overcome the challenges that face us – and we surprise and delight ourselves when we learn what we were always capable of achieving!

Our fear of change coupled with a too-easy escape route leads to giving up when the going gets a bit too tough.  We choose to fail.

Then we erode our confidence a bit more and are even less likely to try next time.

It is not our ability to succeed or the possibility of success that is the issue.  The issue is that we continually create self-fulfilling-failure-prophesies.  Or some of us do.

Fortunately there are a some tenacious, courageous and optimistic innovators who keep getting back on the horse. They are a bit angry – mainly at themselves.

And there is a Chinese proverb that says:

Those who say it cannot be done should not interrupt the person doing it.

those_who_say_it_cannot_be_doneBurning the bridges and the boats can be the bravest and wisest decision that an effective leader can make.  It broadcasts a powerful message. It says: “We are all in this together and I believe we can succeed“.

The NHS has just burned its bridges and boats.

The old wooden PCTs and SHAs have gone up in smoke – and the cash is now held by an innovative new design called Clinical Commissioning Groups.

This change was made final on 1st April 2013 (April Fool’s Day sneer the cynics) – and it is now essentially irreversible. We are all in it together.

What is most interesting to observe is how quiet it seems to have gone. We now have to sink or swim with the new system. And what seems to be happening is that people are getting on with it – and surprising themselves with what they can achieve.

Wasting time complaining reduces our chance of survival and the whiners have become a liability.

Which is good because we will see what is possible when our leaders torch our bridges and boats and we are forced to listen to our inner innovative voices! The ones that we have been drowning out with whining, wailing and complaining for years.

And there is another cultural dimension to this symbolic pyre metaphor. It is important to say “goodbye” to the past and to do so with respect. It is important to mourn the loss of what was good and to acknowledge the passing of what was bad.  It was not all good and it was not all bad. Both sadness and relief are natural parts of change and improvement. They are part of the emotional transition process. The Nerve Curve.

And I know just how this sort of transition feels because this week I went through a major one. I upgraded my old push-button mobile phone to a phablet. Wow! What a transition! I’m going to call it a “fablet”.

I have to say that I have been looking forward to it with a mixture of anticipation and anxiety. I felt a sad to finally say goodbye to my trusted Blackberry and I felt relieved to say goodbye to its Niggles.  The deed is done.  The phone number and contacts have been transferred.  There is no going back.  The boat and bridge are burned. And it was done seamlessly, quickly and with minimal pain. The trigger was the sand running out on my old phone contract. Thank you Car Phone Warehouse – you provided a fabulous service!

And the new fablet feels like an old friend already.

So, onwards and forwards … and so many new and exciting opportunities to explore!  And two days after getting the fablet I am writing Android apps in Java (that is geek-speak just to be extra-super-nerdy) – I would never have done that with the old phone!

Life or Death Decisions

The Improvement Science blog this week is kindly provided by Julian Simcox and Terry Weight.

What can surgeons learn from other professions about making life or death decisions?

http://www.bbc.co.uk/news/health-21862527

Dr Kevin Fong is on a mission to find out what can be done to reduce the number of mistakes being made by surgeons in the operating theatre.

He starts out with an example of a mistake in an operation that involved a problematic tracheotomy and subsequently, despite there being plenty of extra expert advice on hand, sadly the patient died. Crucially, a nurse had been ignored who if listened to might have provided the solution that could have saved the patient’s life.

Whilst looking at other walks of life – this example is used to explore how under similar pressures such mistakes can be avoided. For example, in aviation and in fire-fighting more robust and resilient cultures and systems have evolved – but how?

The Horizon editors highlight the importance of six things and we make some comments:

1. The aviation industry continually designs out hazards and risk.

Aviation was once a very hazardous pursuit. Nowadays the trip to the airport is much riskier than the flight itself, because over the decades aviators have learned how to learn-from-mistakes and to reduce future incidents. They have learned that blaming individuals for systemic failure gets in the way of accumulating the system-wide knowledge that makes the most difference.

Peter Jordan reminds us that in the official report into the 1989 Kegworth air disaster: 31 recommendations for improved safety were made – mainly to do with patient safety during crashes – an even then the report could not resist pointing the finger at the two pilots who, when confronted with a blow-out in one of their two engines, had wrongly interpreted a variety of signals and talked themselves into switching off the wrong engine. On publication of the report they were summarily dismissed, but much later successfully claimed damages for unfair dismissal.

http://en.wikipedia.org/wiki/Kegworth_air_disaster

2. Checklists can make a difference if the Team is engaged

The programme then refers to recent research by the World Health Organisation on the use of checklists that when implemented showed a large (35%) reduction in surgical complications across a range of countries and hospitals.

In University College Hospital London we see checklists being used by the clinical team to powerful effect. The specific example given concerns the process of patient hand-over after an operation from the surgical team to the intensive care unit. Previously this process had been ill-defined and done differently by lots of people – and had not been properly overseen by anyone.

No reference is made however to the visual display of data that helps teams see the effect of their actions on their system over time, and there is no mention of whether the checklists have been designed by outsiders or by the team themselves.

In our experience these things make a critical difference to ongoing levels of engagement – and to outcomes – especially in the NHS where checklists have historically been used more as a way of ensuring compliance with standards and targets imposed from the top. Too often checklists are felt to be instruments of persecution and are therefore fiercely (and justifiably) resisted.

We see plenty of scope in the NHS for clarifying and tightening process definitions, but checklists are only one way of prompting this. Our concern is that checklists could easily become a flavour-of-the-month thing – seen as one more edict from above. And all-too-quickly becoming yet another layer of the tick-box bureaucracy, of the kind that most people say they want to get away from.

We also see many potentially powerful ideas flowing form the top of the NHS, raining down on a system that has become moribund – wearied by one disempowering change initiative after another.

3. Focussing on the team and the process – instead of the hierarchy – enhances cooperation and reduces deferential behaviour.

Learning from the Formula One Pit Stop Team processes, UCH we are told have flattened their hierarchy ensuring that at each stage of the process there is clear leadership, and well understood roles to perform. After studying their process they have realised that most of the focus had previously been on only the technically demanding work rather than on the sequence of steps and the need for ensuring clear communication between each one of those steps. We are told that flattening the hierarchy in order to prioritise team working has also helped – deference to seniority (e.g. nurses to doctors) is now seen as obstructing safer practice.

Achieving role clarity goes hand-in-hand with simplification of the system – which all starts with careful process definition undertaken collaboratively by the team as a whole. In the featured operation every individual appears to know their role and the importance of keeping things simple and consistent. In our experience this is all the more powerful when the team agree to standardise procedures as soon as any new way has been shown to be more effective.

4. Situational Awareness is an inherent human frailty.

We see how fire officers are specifically trained to deal with situations that require both a narrow focus and an ability to stand back and connect to the whole – a skill which for most people does not come naturally. Under pressure we each too often fail to appreciate either the context or the bigger picture, losing situational awareness and constraining our span of attention.

In the aviation industry we see how pilot training is nowadays considered critically important to outcomes and to the reductions of pilot error in emergencies. Flight simulators and scenario simulation now play a vital role, and this is becoming more commonplace in senior doctor training.

It seems common sense that people being trained should experience the real system whilst being able to making mistakes. Learning comes from experimentation (P-D-C-A). In potentially life-and-death situations simulation allows the learning and the building of needed experience to be done safely off-line. Nowadays, new systems containing multiple processes and lots of people can be designed using computer simulations, but these skills are as yet in short supply in the NHS.

http://www.saasoft.com/6Mdesign/index.php

5. Understand the psychology of how people respond to their mistakes.

Using some demonstrations using playing cards, we see how people who have a non-reactive attitude to mistakes respond better to making them and are then less likely to make the same mistake again. Conversely some individuals seem to be less resilient – we would say becoming unstable – taking longer to correct their mistakes and subsequently making more of them. Recruitment of doctors is now starting to include the use of simulators to test for this psychological ability.

6. Innovation more easily flows from systems that are stable.

Due to a bird strike a few minutes after take-off, stopping both engines, an aircraft in 2008 was forced to crash land. The landing – in to New York’s Hudson River – was an innovative novel manoeuvre, and incredibly led to the survival of all the passengers and crew. An innovation that was safely executed by the pilot who in the moment kept his cool by sticking to the procedures and checklists he had been trained in.

This capability we are told had been acquired over more than three decades by the pilot Captain “Sully” Sullenberger, who sees himself as part of an industry that over time institutionalises emerging knowledge. He tells us that he had faith in the robustness and resilience of this knowledge that had accumulated by using the lessons from the past to build a safer future. He suggests it would be immoral not to learn from historical experience. To him it was “this robustness that made it possible to innovate when the unknown occurred”.

Standardisation often spawns innovation – something which for many people remains a counter-intuitive notion.

Sullenberger was subsequently lauded as a hero, but he himself tells us that he merely stuck to the checklist procedures and that this helped him to keep his cool whilst realising he needed to think outside the box.

The programme signs off with the message that human error is always going to be with us, and that it is how we deal with human error that really matters. In aviation there is a continual search for progress, rather than someone to blame. By accepting our psychological fallibility we give ourselves – in the moment – the best possible chance.

The programme attempts to balance the actions of the individual with collective action over time to design and build a better system – one in which all individuals can play their part well. Some viewers may have ended up remembering most the importance of the “heroic” individual. In our view more emphasis could have placed on the design of the system as a whole – such that it more easily maintains its stability without needing to rely either on the heroic acts of any one individual or on finding the one scapegoat.

If heroes need to exist they are the individuals who understand their role and submit themselves to the needs of team and to achieving the outcomes that are needed by the wider system. We like that the programme ends with the following words:

Search for progress, not someone to blame!

 

 

 

Now I See!

happy_face_smile_button_400_wht_9149It has been a very exciting week.

Each day has been a fantastic opportunity to learn and to share.

Learning more about what many perceive as the barriers to improvement; and sharing what is possible and how to achieve it.

There has been no lack of desire to improve. There has been no lack of commitment to engage actively in creating improvement. There has been no lack of ideas.

What has been lacking is alignment. Not on the why – our shared purpose – that appears to be agreed by all. We have 100% alignment that we all want a safer, higher quality more affordable system.  We all want win-win-win.

The lack of alignment has been about how we get there from where we are.

So what has been really exciting is to observe the impact of just telling stories of “How this win-win-win outcome was achieved.” Real stories. Actual improvement.

What was even more exciting was to observe the reactions of those who were active participants in a real exercise that demonstrates the “how to do it“, in real time and with a realistic problem.

The reactions were consistent …

Now I See! Win-win-win is possible!
Now I See! It is obvious how – when you know what to look for and what do do – when you know how!
Now I See! What was blocking my path before! The invisible belief barrier!
Now I See! What my part could be in a future win-win-win improvement story!
Now I See! What I can do next!
Now I See! That what I do is inside my circle of control!
Now I See! That the choice to act is mine and mine alone!
Now I See! How I can influence others through my options, my choices, my actions and my story!

And now I feel even more inspired, energised, aligned and enabled.

thank_you_boing_150_wht_5547It has been a great week!

Thank you everyone for giving me such a great week.

Time-Reversed Insight

stick_figure_wheels_turning_150_wht_4572Thinking-in-reverse sounds like an odd thing to do but it delivers more insight and solves tougher problems than thinking forwards.  That is the reason it is called Time-Reversed Insight.   And once we have mastered how to do it, we discover that it comes in handy in all sorts of problematic situations where thinking forwards only hits a barrier or even makes things worse.

Time-reversed thinking is not the same thing as undoing what you just did. It is reverse thinking – not reverse acting.

We often hear the advice “Start with the end in mind …” and that certainly sounds like it might be time-reversed thinking, but it is often followed by “… to help guide your first step.” The second part tells us it is not. Jumping from outcome to choosing the first step is actually time-forward thinking.

Time-forward thinking comes in many other disguises: “Seeking your True North” is one and “Blue Sky Thinking” is another. They are certainly better than discounting the future and they certainly do help us to focus and to align our efforts – but they are still time-forward thinking. We know that because the next question is always “What do we do first? And then? And then?” in other words “What is our Plan?”.

This is not time-reversed insightful thinking: it is good old, tried-and-tested, cause-and-effect thinking. Great for implementation but a largely-ineffective, and a hugely-inefficient way to dissolve “difficult” problems. In those situation it becomes keep-busy behaviour. Plan-Do-Plan-Do-Plan-Do ……..


In time-reversed thinking the first question looks similar. It is a question about outcome but it is very specific.  It is “What outcome do we want? When do we want it? and How would we know we have got it?”  It is not a direction. It is a destination. The second question in time-reversed thinking is the clincher. It is  “What happened just before?” and is followed by “And before that? And before that?“.

We actually do this all the time but we do it unconsciously and we do it very fast.  It is called the “blindingly obvious in hindsight” phenomenon.  What happens is we feel the good or bad outcome and then we flip to the cause in one unconscious mental leap. Ah ha!

And we do this because thinking backwards in a deliberate, conscious, sequential way is counter-intuitive.

Our unconscious mind seems to have no problem doing it though. And that is because it is wired differently. Some psychologists believe that we literally have “two brains”: one that works sequentially in the direction of forward time – and one that works in parallel and in a forward-and backward in time fashion. It is the sequential one that we associate with conscious thinking; it is the parallel one that we associate with unconscious feeling. We do both and usually they work in synergy – but not always. Sometimes they antagonise each other.

The problem is that our sequential, conscious brain does not  like working backwards. Just like we do not like walking backwards, or driving backwards.  We have evolved to look, think, and move forwards. In time.

So what is so useful about deliberate, conscious, time-reversed thinking?

It can give us an uniquely different perspective – one that generates fresh insight – and that new view enables us to solve problems that we believed were impossible when looked at in a time-forward way.


An example of time-reverse thinking:

The 4N Chart is an emotional mapping tool.  More specifically it is an emotion-over-time mapping technique. The way it is used is quite specific and quite counter-intuitive.  If we ask ourselves the question “What is my top Niggle?” our reply is usually something like “Not enough time!” or “Person x!” or “Too much work!“.  This is not how The 4N Chart is designed to be used.  The question is “What is my commonest negative feeling?” and then the question “What happened just before I felt it?“.  What was the immediately preceding cause of  the Niggle? And then the questions continue deliberately and consciously to think backwards: “And before that?”, “And before that?” until the root causes are laid bare.

A typical Niggle-cause exposing dialog might be:

Q: What is my most commonest negative feeling?
A: I feel angry!
Q: What happened just before?
A: My boss gives me urgent jobs to do at half past 4 on Friday afternoon!
Q: And before that?
A: Reactive crisis management meetings are arranged at very short notice!
Q: And before that?
A: We have regular avoidable crises!
Q: And before that?
A: We are too distracted with other important work to spot each crisis developing!
Q: And before that?
A: We were not able to recruit when a valuable member of staff left.
Q: And before that?
A: Our budget was cut!

This is time-reversed  thinking and we can do this reasonably easily because we are working backwards from the present – so we can use our memory to help us. And we can do this individually and collectively. Working backwards from the actual outcome is safer because we cannot change the past.

It is surprisingly effective though because by doing this time-reverse thinking consciously we uncover where best to intervene in the cause-and-effect pathway that generates our negative emotions. Where it crosses the boundary of our Circle of Control. And all of us have the choice to step-in just before the feeling is triggered. We can all choose if we are going to allow the last cause to trigger to a negative feeling in us. We can all learn to dodge the emotional hooks. It takes practice but it is possible. And having deflected the stimulus and avoided being hijacked by our negative emotional response we are then able to focus our emotional effort into designing a way to break the cause-effect-sequence further upstream.

We might leave ourselves a reminder to check on something that could develop into a crisis without us noticing. Averting just one crisis would justify all the checking!

This is what calm-in-a-crisis people do. They disconnect their feelings. It is very helpful but it has a risk.

robot_builder_textThe downside is that they can disconnect all their feelings – including the positive ones. They can become emotionless, rational, logical, tough-minded robots.  And that can be destructive to individual and team morale. It is the antithesis of improvement.

So be careful when disconnecting emotional responses – do it only for defense – never for attack.


A more difficult form of time-reversed thinking is thinking backwards from future-to-present.  It is more difficult for many reasons, one of which is because we do not have a record of what actually happened to help us.  We do however have experience of  similar things from the past so we can make a good guess at the sort of things that could cause a future outcome.

Many people do this sort of thinking in a risk-avoidance way with the objective of blocking all potential threats to safety at an early stage. When taken to extreme it can manifest as turgid, red-taped, blind bureaucracy that impedes all change. For better or worse.

Future-to-present thinking can be used as an improvement engine – by unlocking potential opportunity at an early stage. Innovation is a fragile flower and can easily be crushed. Creative thinking needs to be nurtured long enough to be tested.

Change is deliberately destablising so this positive form of future-to-present thinking can also be counter-productive if taken to extreme when it becomes incessant meddling. Change for change sake is also damaging to morale.

So, either form of future-to-present thinking is OK in moderation and when used in synergy the effect is like magic!

Synergistic future-to-present time-reversed thinking is called Design Thinking and one formulation is called 6M Design.

What is the Temperamenture?

tweet_birdie_flying_between_phones_150_wht_9168Tweet
The sound heralded the arrival of a tweet so Bob looked up from his book and scanned the message. It was from Leslie, one of the Improvement Science apprentices.

It said “If your organisation is feeling poorly then do not forget to measure the Temperamenture. You may have Cultural Change Fever.

Bob was intrigued. This was a novel word and he suspected it was not a spelling error. He know he was being teased. He tapped a reply on his iPad “Interesting word ‘Temperamenture’ – can you expand?” 

Ring Ring
<Bob> Hello, Bob here.

There was laughing on the other end of the line – it was Leslie.

<Leslie> Ho Ho. Hi Bob – I thought that might prick your curiosity if you were on line. I know you like novel words.

<Bob> Ah! You know my weakness – I am at your mercy now!  So, I am consumed with curiosity – as you knew I would be.

<Leslie> OK. No more games. You know that you are always saying that there are three parts to Improvement Science – Processes, People and Systems – and that the three are synergistic so they need to be kept in balance …

<Bob> Yes.

<Leslie> Well, I have discovered a source of antagonism that creates a lot of cultural imbalance and emotional heat in my organisation.

<Bob> OK. So I take from that you mean an imbalance in the People part that then upsets the Process and System parts.

<Leslie> Yes, exactly. In your Improvement Science course you mentioned the theory behind this but did not share any real examples.

<Bob> That is very possible.  Hard evidence and explainable examples are easier for the Process component – the People stuff is more difficult to do that way.  Can you be more specific?  I think I know where you may be going with this.

<Leslie> OK. Where do you feel I am going with it?

<Bob> Ha! The student becomes the teacher. Excellent response! I was thinking something to do with the Four Temperaments.

<Leslie>Yes.  And specifically the conflict that can happen between them.  I am thinking of the tension between the Idealists and the Guardians.

<Bob> Ah!  Yes. The Bile Wars – Yellow and Black. The Cholerics versus the Melancholics. So do you have hard evidence of this happening in reality rather than just my theoretical rhetoric?

<Leslie> Yes!  But the facts do not seem to fit the theory. You know that I work in a hospital. Well one of the most important “engines” of a hospital is the surgical operating suite. Conveniently called the SOS.

<Bob> Yes. It seems to be a frequent source of both Nuggets and Niggles.

<Leslie> Well, I am working with the SOS team at my hospital and I have to say that they are a pretty sceptical bunch.  Everyone seems to have strong opinions.  Strong but different opinions of what should happen and who should do it.  The words someone and should get mentioned a lot.  I have not managed to find this elusive “someone” yet.  The some-one, no-one, every-one, any-one problem.

<Bob> OK. I have heard this before. I hear that surgeons in particular have strong opinions – and they disagree with each other!  I remember watching episodes of “Doctor in the House” many years ago.  What was the name of the irascible chief surgeon played by James Robertson Justice? Sir Lancelot Spratt the archetype consultant surgeon. Are they actually like that?

<Leslie> I have not met any as extreme as Sir Lancelot though some do seem to emulate that role model.  In reality the surgeons, anaesthetists, nurses, ODPs, and managers all seem to believe there is one way that a theatre should be run, their way, and their separate “one ways” do not line up.  Hence the conflict and high emotional temperature.

<Bob> OK, so how does the Temperament dimension relate to this?  Is there a temperament mismatch between the different tribes in the operating suite as the MBTI theory would suggest?

<Leslie> That was my hypothesis and I decided that the only way I could test it was by mapping the temperaments using the Temperament Sorter from the FISH toolbox.

<Bob> Excellent, but you would need quite a big sample to draw any statistically valid conclusions.  How did you achieve that with a group of disparate sceptics?

<Leslie>I know.  So I posed this challenge as a research question – and they were curious enough to give it a try.  Well, the Surgeons and Anaesthetists were anyway.  The Nurses, OPDs and Managers chose to sit on the fence and watch the game.

<Bob>Wow! Now I am really interested. What did you find?

<Leslie>Woah there!  I need to explain how we did it first.  They have a monthly audit meeting where they all get together as separate groups and after I posed the question they decided to do use the Temperament Sorter at one of those meetings.  It was done in a light-hearted way and it was really good fun too.  I brought some cartoons and descriptions of the sixteen MBTI types and they tried to guess who was which type.

<Bob>Excellent.  So what did you find?

<Leslie>We disproved the hypothesis that there was a Temperament mismatch.

<Bob>Really!  What did the data show?

<Leslie> It showed that the Temperament profile for both surgeons and anaesthetists was different from the population average …

<Bob>OK, and …?

<Leslie>… and that there was no statistical difference between surgeons and anaesthetists.

<Bob> Really! So what are they both?

<Leslie> Guardians. The majority of both tribes are SJs.

There was a long pause.  Bob was digesting this juicy new fact.  Leslie knew that if there was one thing that Bob really liked it was having a theory disproved by reality.  Eventually he replied.

<Bob> Clarity of hindsight is a wonderful thing.  It makes complete sense that they are Guardians.  Speaking as a patient, what I want most is Safety and Predictability which is the ideal context for Guardians to deliver their best.  I am sure that neither surgeons nor anaesthetists like “surprises” and I suspect that they both prefer doing things “by the book”.  They are sceptical of new ideas by temperament.

<Leslie> And there is more.

<Bob> Excellent! What?

<Leslie> They are tough-minded Guardians. They are STJs.

<Bob> Of course!  Having the responsibility of “your life in my hands” requires a degree of tough-mindedness and an ability to not get too emotionally hooked.  Sir Lancelot is a classic extrovert tough-minded Guardian!  The Rolls-Royce and the ritual humiliation of ignorant underlings all fits.  Wow!  Well done Leslie.  So what have you done with this new knowledge and deeper understanding?

<Leslie> Ouch! You got me! That is why I sent the Tweet. Now what do I do?

<Bob> Ah! I am not sure.  We are both sailing in uncharted water now so I suggest we explore and learn together.  Let me ponder and do some exploring of the implications of your findings and I will get back to you.  Can you do the same?

<Leslie> Good plan. Shall we share notes in a couple of days?

<Bob> Excellent. I look forward to it.


This is not a completely fictional narrative.

In a recent experiment the Temperament of a group of 66 surgeons and 65 anaesthetists was mapped using a standard Myers-Briggs Type Indicator® tool.  The data showed that the proportion reporting a Guardian (xSxJ) preference was 62% for the surgeons and 59% for the anaesthetists.  The difference was not statistically significant [For the statistically knowledgable the Chi-squared test gave a p-value of 0.84].  The reported proportion of the normal population who have a Guardian temperament is 34% so this is very different from the combined group of operating theatre doctors [Chi-squared test, p<0.0001].  Digging deeper into the data the proportion showing the tough-minded Guardian preference, the xSTJ, was 55% for the Surgeons and 46% for the Anaesthetists which was also not significantly different [p=0.34] but compared with a normal population proportion of 24% there are significantly more tough-minded Guardians in the operating theatre [p<0.0001].

So what then is the difference between Surgeons and Anaesthetists in their preferred modes of thinking?

The data shows that Surgeons are more likely to prefer Extraversion – the ESTJ profile – compared with Anaesthetists – who lean more towards Introversion – the ISTJ profile (p=0.12). This p-value means that with the data available there is a one in eight chance that this difference is due to chance. We would needs a bigger set of data to get greater certainty.

The temperament gradient is enough to create a certain degree of tension because although the Guardian temperament is the same, and the tough-mindedness is the same, the dominant function differs between the ESTJ and the ISTJ types.  As the Surgeons tend to the ESTJ mode, their dominant function is Thinking Judgement. The Anaesthetists tend to perfer ISTJ so their dominant fuction is Sensed Perceiving. This makes a big difference.

And it fits with their chosen roles in the operating theatre. The archetype ESTJ Surgeon is the Supervisor and decides what to do and who does it. The archetype ISTJ Anaesthetist is the Inspector and monitors and maintains safety and stability. This is a sweepig generalisation of course – but a useful one.

The roles are complementary, the minor conflict is inevitable, and the tension is not a “bad” thing – it is healthy – for the patient.  But when external forces threaten the safety, predictability and stability the conflict is amplified.

lightning_strike_150_wht_5809Rather like the weather.

Hot wet air looks clear. Cold dry air looks clear too.  When hot-humid air from the tropics meets cold-crisp air from the poles then a band of of fog will be created.  We call it a weather front and it generates variation.  And if the temperature and humidity difference is excessive then storm clouds will form. The lightning will flash and the thunder will growl as the energy is released.

Clouds obscure clarity of forward vision but clouds also create shade from the sun above; clouds trap warmth beneath; and clouds create rain which is necessary to sustain growth. Clouds are not all bad.  Some cloudiness is necessary.

An Improvement Scientist knows that 100% harmony is not the healthiest ratio. Unchallenged group-think is potentially dangerous.  Zero harmony is also unhealthy.  Open warfare is destructive.  Everyone loses.  A mixture of temperaments, a diversity of perspectives, a bit of fog, and a bit of respectful challenge is healthier than All-or-None.

It is at the complex and dynamic interface between different temperaments that learning and innovation happens so a slight temperamenture gradient is ideal.  The emotometer should not read too cold or too hot.

Understanding this dynamic is a big step towards being able to manage the creative tension.

To explore the Temperamenture Map of your team, department and organisation try the Temperament Sorter tool – one of the Improvement Science cultural diagnostic tests.

The Five Ages of Improvement

Improvement is not easy. If it were this blog would not attract any vistors.  The data says that the hit rate is increasing. So what questions are visitors asking?

What makes improvement so difficult?

In a word – disappointment.

Or rather the cumulative effect of repeated disappointments.

Over time we become emotionally damaged by disappointment. Our youthful mountain of optimism is slowly eroded and washed away by the stormy reality that life throws at us.

Is this emotional erosion inevitable? I believe not. Some seem to avoid it with innate ability – the rest of us have to learn how. To do that we need to understand how the emotional erosion happens and with that insight we can design an anti-disappointment defense for ourselves.

I see it as a time-dependent process with five phases. The divisions are somewhat artificial because it is a continuous process; the phases overlap and we do not all progress at the same rate. Each phase lasts about 10-15 years it seems.

The First Age – Tender Idealism

Tender_Idealist

The natural child-like behaviour that we are born with is curious, playful, happy, and optimistic.  We arrive with no knowledge of the real world.  Our starting expectation is high because all we have experienced is the safe, warm, fuzzy redness of the womb. Birth is our first big disappointment! Ouch! It is cold out here and suddenly we have to do lots more for ourselves such as breathing, keeping warm, eating, weeing, and pooing. Waaaaaah!

Some claim that we spend our whole lives trying in vain to regain that wonderful, warm womb-like feeling of security and comfort.

But after our birthday surprise we activate our innate curiosity and we learn quickly as we explore the real world. We do not forget though –  we dream about how the world could be more womb-like. We are natural idealists. We all want to recreate a reliable comfort-zone. And anything that gets in our way needs to be removed! The old ideas and the old farts who cling on to them need to go! The problems and solutions are obvious; crystal clear; black-or-white; day-or-night; all-or-nothing; either-or. We start as Tender Idealists.

And we learn quickly that reality resists us.

The Second Age  – Tearful Optimism

Tearful_Optimist

As our experience grows the perfectly sharp edges of our idealism become smoothed off: eroded by the emotional impacts of numerous small disappointments. We remain optimists but our expectations are lowered and our frustrations are elevated. We are told by the Older-and-Wiser that when we fall off our bikes or horses we should brush ourselves down, get back on and try again. “No Pain No Gain” they preach. But it really hurts when we fall off – we graze our knees and we bruise our egos. We cry tears of frustration, pain and fear. But we strive to retain our optimism. We try again, and again, and again. And we are young so we have energy and stamina. We are not too damaged – not yet. We are Tearful Optimists.

The Third Age – Tired Realism

Tired_RealistBut reality is relentless. The battering by the sunshine and storms of life continue – apparently unaffected by our strenuous efforts to create calm.  And we keep slipping as the complexity mud gets thicker, deeper and stickier. We become more, and more tired. We try less and we sit on the fence more. It is less difficult, less tiring, less self-disappointing. We develop a taste for spectator sports. We adopt a team. We cheer when they win and we chide when they lose. Reality has eroded our optimism to the point where it has become so fragile that we dare not pit it against new challenges. We fear the seemingly inevitable failure and the consequent disappointment. Just one more tumble could break us completely. We have become Tired Realists.

The Fourth Age – Turgid Skepticism

Turgid_SkepticNow the rules of the life-game change. We must now protect the last precious vestiges of our hope and we must defend our life-dream from despair. So we build barriers that block the new Idealists and the new Optimists from blindly generating more disappointments for themselves – and for us.  We do not want to lose all hope. We exercise our intellect and our experience and we become experts in the “Yes … but” game.  We dispell new ideas and we say that they are not new and they are not worth trying. We say “Yes, but we tried that and it did not work“. We create a red-taped morass of bureaucracy to slow them down and to tire them out. And we can do that because by now we have gravitated to Positions of Authority. We write the Rules. And our rules all start with the word “No”.

The Tired Realists sit on the fence to watch the New Optimists battle with us Old Skeptics. Just as they had done when they still had the energy. It becomes their favourite spectator sport. A few optimists navigate the bureaucracy swamp and have their innovations implemented. Some even succeed and shine for a while. All fade and fail eventually. The emotional erosion continues relentlessly.

The skeptics are well-intentioned though – they want to prevent avoidable disappointment – but their strategy is non-specific. It blocks all innovation – both the worthwhile and the worthless. And their preferred tool is the simple question “Where is the evidence?” No evidence means “game over” but having evidence is no guarantor of success. Evidence means rich opportunities for nit-picking. The more academic skeptics discard what cannot be proved statistically beyond all reasonable doubt and unintentionally create an unwinnable game of Catch-22.  And over time their examination of the evidence becomes less and less rigorous. They become increasingly Turgid Skeptics.

The Fifth Age – Toxic Cynicism

Toxic_CynicThe final age starts when the skeptic suffers dream failure and enters the Land of the Hopeless. Here any idealism, optimism and realism are discounted by default and without respect. Their Pavlovian reflex is now fully established – every one and every thing is discounted without conscious thought. This is the Creed of the Cynics. The continuous discounting acts as an oily emotional toxin. It is called cynicide – and it poisons the whole organisation. It greases the slippery slope from Realist through Skeptic to Cynic – who may be a minority but the damage they create is disproportionately large. The Toxic Cynics create the waves that trigger the storms that drive the whole disappointment process.

And Toxic Cynics are indiscriminate. A Tender Idealiss can have their fragile and nascent curiosity and optimism destroyed by just one poisonous barb fired accurately but unwittingly by a habitually cynical parent figure.

stick_figure_drawing_three_check_marks_150_wht_5283So what does an experienced Improvement Scientist do to avoid the decline to Cynicism? What strategies do they employ to deflect and dissipate the storms and to defend themselves from their emotionally erosive action?

First they learn of the weathering process and the damage it does and they actively remove themselves from the most toxic parts of their organisations. Why be exposed to cynicide for no good reason? They avoid the cynics,  their congregations and their conversations. They avoid the emotional hooks-and-lines that cynics cast and use to draw others into the Drama Triangle – the negative emotional maelstrom from which the unwitting victims may never escape.

Second they learn to channel their own disappointment into improvement. They learn that after they have failed to meet their own expectation they must step back, reflect, understand what happened, formulate a new design, and then try again. Not just to blindly repeat the same action in the hope that just determination and repetition is sufficient. It is not. They also learn to do the same after a success – they reflect and understand what delivered the delight and how to make that happen more often.

Third they learn to engage the skeptics in a constructive dialog. Skeptics are useful – their sharp questions can help to improve an innovation as much as to destroy one. And they learn how to disarm the cynics. They learn how to neutralise the cynicide poison – by exposing it to the antidote – Respectful Challenge of the Cynical Behaviour.

leaderEffective leaders are de facto improvement scientists. Effective leaders carve an alternative groove for the Idealists, Optimists and Realists – the path to Capability, Credibility, and Sagacity. Effective leaders nurture the Idealists because they are the  future Optimists. Effective leaders support the Optimists because they are the future leaders. Effective leaders coax the Realists out of passive observation and into active participation. Effective leaders respect the Skeptics for their skills and restrict their bureaucracy.  Effective leaders block cynicide production by offering the Cynics a simple binary choice: healthy skepticism or The Door.

The Five Ages represent learned roles not inherited attributes. We can all choose our behaviour. We can all choose to play any of the five roles at any time. We are not Saints or Sinners. We are all fallible; we are all on the same life path and we all have the same choices:

Do we choose the path of continual improvement or do we choose the path of constant disappointment?

A wise decision is required.

And for the Optimists, Realists and Skeptics out there – hard evidence that Improvement Science works in practice – even when the participants are highly skeptical – the six week update on the real example described in The Writing On The Wall – Part I

The Seventh Flow

texting_a_friend_back_n_forth_150_wht_5352Bing Bong

Bob looked up from the report he was reading and saw the SMS was from Leslie, one of his Improvement Science Practitioners.

It said “Hi Bob, would you be able to offer me your perspective on another barrier to improvement that I have come up against.”

Bob thumbed a reply immediately “Hi Leslie. Happy to help. Free now if you would like to call. Bob

Ring Ring

<Bob> Hello, Bob here.

<Leslie> Hi Bob. Thank you for responding so quickly. Can I describe the problem?

<Bob> Hi Leslie – Yes, please do.

<Leslie> OK. The essence of it is that I have discovered that our current method of cash-flow control is preventing improvements in safety, quality, delivery and paradoxically in productivity too. I have tried to talk to the Finance department and all I get back is “We have always done it this way. That is what we are taught. It works. The rules are not negotiable and the problem is not Finance“. I am at a loss what to do.

<Bob> OK. Do not worry. This is a common issue that every ISP discovers at some point. What led you to your conclusion that the current methods are creating a barrier to change?

<Leslie> Well, the penny dropped when I started using the modelling tools you have shown me.  In particular when predicting the impact of process improvement-by-design changes on the financial performance of the system.

<Bob> OK. Can you be more specific?

<Leslie> Yes. The project was to design a new ambulatory diagnostic facility that will allow much more of the complex diagnostic work to be done on an outpatient basis.  I followed the 6M Design approach and looked first at the physical space design. We needed that to brief the architect.

<Bob> OK. What did that show?

<Leslie> It showed that the physical layout had a very significant impact on the flow in the process and that by getting all the pieces arranged in the right order we could create a physical design that felt spacious without actually requiring a lot of space. We called it the “Tardis Effect“. The most marked impact was on the size of the waiting areas – they were really small compared with what we have now which are much bigger and yet still feel cramped and chaotic.

<Bob> OK. So how does that physical space design link to the finance question?

<Leslie> Well, the obvious links were that the new design would have a smaller physical foot-print and at the same time give a higher throughput. It will cost less to build and will generate more activity than if we just copied the old design into a shiny new building.

<Bob> OK. I am sure that the Capital Allocation Committee and the Revenue Generation Committee will have been pleased with that outcome. What was the barrier?

<Leslie> Yes, you are correct. They were delighted because it left more in the Capital Pot for other equally worthy projects. The problem was not capital it was revenue.

<Bob> You said that activity was predicted to increase. What was the problem?

<Leslie>Yes – sorry, I was not clear – it was not the increased activity that was the problem – it was how to price the activity and  how to distribute the revenue generated. The Reference Cost Committee and Budget Allocation Committee were the problem.

<Bob> OK. What was the problem?

<Leslie> Well the estimates for the new operational budgets were basically the current budgets multiplied by the ratio of the future planned and historical actual activity. The rationale was that the major costs are people and consumables so the running costs should scale linearly with activity. They said the price should stay as it is now because the quality of the output is the same.

<Bob> OK. That does sound like a reasonable perspective. The variable costs will track with the activity if nothing else changes. Was it apportioning the overhead costs as part of the Reference Costing that was the problem?

<Leslie> No actually. We have not had that conversation yet. The problem was more fundamental. The problem is that the current budgets are wrong.

<Bob> Ah! That statement might come across as a bit of a challenge to the Finance Department. What was their reaction?

<Leslie> To para-phrase it was “We are just breaking even in the current financial year so the current budget must be correct. Please do not dabble in things that you clearly do not understand.”

<Bob> OK. You can see their point. How did you reply?

<Leslie> I tried to explain the concepts of the Cost-Of-The-Queue and how that cost was incurred by one part of the system with one budget but that the queue was created by a different part of the system with a different budget. I tried to explain that just because the budgets were 100% utilised does not mean that the budgets were optimal.

<Bob> How was that explanation received?

<Leslie> They did not seem to understand what I was getting at and kept saying “Inventory is an asset on the balance sheet. If profit is zero we must have planned our budgets perfectly. We cannot shift money between budgets within year if the budgets are already perfect. Any variation will average out. We have to stick to the financial plan and projections for the year. It works. The problem is not Finance – the problem is you.

<Bob> OK. Have you described the Seventh Flow and put it in context?

<Leslie> Arrrgh! No! Of course! That is how I should have approached it. Budgets are Cash-Inventories and what we need is Cash-Flow to where and when it is needed and in just the right amount according to the Principle of Parsimonious Pull. Thank you. I knew you would ask the crunch question. That has given me a fresh perspective on it. I will have another go.

<Bob> Let know how you get on. I am curious to hear the next instalment of the story.

<Leslie> Will do. Bye for now.

Drrrrrrrr

construction_blueprint_meeting_150_wht_10887Creating a productive and stable system design requires considering Seven Flows at the same time. The Seventh Flow is cash flow.

Cash is like energy – it is only doing useful work when it is flowing.

Energy is often described as two forms – potential energy and and kinetic energy.  The ‘doing’ happens when one form is being converted from potential to kinetic. Cash in the budget is like potential energy – sitting there ready to do some business.  Cash flow is like kinetic energy – it is the business.

The most versatile form of energy that we use is electrical energy. It is versatile because it can easily be converted into other forms – e.g. heat, light and movement. Since the late 1800’s our whole society has become highly dependent on electrical energy.  But electrical energy is tricky to store and even now our battery technology is pretty feeble. So, if we want to store energy we use a different form – chemical energy.  Gas, oil and coal – the fossil fuels – are all ancient stores of chemical energy that were originally derived from sunlight captured by vast carboniferous forests over millions of years. These carbon-rich fossil fuels are convenient to store near where they are needed, and when they are needed. But fossil fuels have a number of drawbacks: One is that they release their stored carbon when they are “burned”.  Another is that they are not renewable.  So, in the future we will need to develop better ways to capture, transport, use and store the energy from the Sun that will flow in glorious abundance for millions of years to come.

Plants discovered millions of years ago how to do this sunlight-to-chemical energy conversion and that biological legacy is built into every cell in every plant on the planet. Animals just do the reverse trick – they convert chemical-to-electrical. Every cell in every animal on the planet is a microscopic electrical generator that “burns” chemical fuel – carbohydrate. The other products are carbon dioxide and water. Plants use sunlight to recycle and store the carbon dioxide. It is a resilient and sustainable design.

plant_growing_anim_150_wht_9902Plants seemingly have it easy – the sunlight comes to them – they just sunbathe all day!  The animals have to work a bit harder – they have to move about gathering their chemical fuel. Some animals just feed on plants, others feed on other animals, and we do a bit of both. This food-gathering is a more complicated affair – and it creates a problem. Animals need a constant supply of energy – so they have to carry a store of chemical fuel around with them. That store is heavy so it needs energy to move it about.  Herbivors can be bigger and less intelligent because their food does not run away.  Carnivors need to be more agile; both physically and mentally. A balance is required. A big enough fuel store but not too big.  So, some animals have evolved additional strategies. Animals have become very good at not wasting energy – because the more that is wasted the more food that is needed and the greater the risk of getting eaten or getting too weak to catch the next meal.

To illustrate how amazing animals are at energy conservation we just need to look at an animal structure like the heart. The heart is there to pump blood around. Blood carries chemical nutrients and waste from one “department” of the body to another – just like ships, rail, roads and planes carry stuff around the world.

cardiogram_heart_working_150_wht_5747Blood is a sticky, viscous fluid that requires considerable energy to pump around the body and, because it is pumped continuously by the heart, even a small improvement in the energy efficiency of the circulation design has a big long-term cumulative effect. The flow of blood to any part of the body must match the requirements of that part.  If the blood flow to your brain slows down for even few seconds the brain cannot work properly and you lose consciousness – it is called “fainting”.

If the flow of blood to the brain is stopped for just a few minutes then the brain cells actually die. That is called a “stroke”. Our brains use a lot of electrical energy to do their job and our brain cells do not have big stores of fuel – so they need constant re-supply. And our brains are electrically active all the time – even when we are sleeping.

Other parts of the body are similar. Muscles for instance. The difference is that the supply of blood that muscles need is very variable – it is low when resting and goes up with exercise. It has been estimated that the change in blood flow for a muscle can be 30 fold!  That variation creates a design problem for the body because we need to maintain the blood flow to brain at all times but we only want blood to be flowing to the muscles in just the amount that they need, where they need it and when they need it. And we want to minimise the energy required to pump the blood at all times. How then is the total and differential allocation of blood flow decided and controlled?  It is certainly not a conscious process.

stick_figure_turning_valve_150_wht_8583The answer is that the brain and the muscles control their own flow. It is called autoregulation.  They open the tap when needed and just as importantly they close the tap when not needed. It is called the Principle of Parsimonious Pull. The brain directs which muscles are active but it does not direct the blood supply that they need. They are left to do that themselves.

So, if we equate blood-flow and energy-flow to cash-flow then we arrive at a surprising conclusion. The optimal design, the most energy and cash efficient, is where the separate parts of the system continuously determine the energy/cash flow required for them to operate effectively. They control the supply. They autoregulate their cash-flow. They pull only what they need when they need it.

BUT

For this to work then every part of the system needs to have a collaborative and parsimonious pull-design philosophy – one that wastes as little energy and cash as possible.  Minimum waste of energy requires careful design – it is called ergonomic design. Minimum waste of cash requires careful design – it is called economic design.

business_figures_accusing_anim_150_wht_9821Many socioeconomic systems are fragmented and have parts that behave in a “greedy” manner and that compete with each other for resources. It is a dog-eat-dog design. They would use whatever resources they can get for fear of being starved. Greed is Good. Collaboration is Weak.  In such a competitive situation a rigid-budget design is a requirement because it helps prevent one part selfishly and blindly destabilising the whole system for all. The problem is that this rigid financial design blocks change so it blocks improvement.

This means that greedy, competitive, selfish systems are unable to self-improve.

So, when the world changes too much and their survival depends on change then they risk becoming extinct just as the dinosaurs did.

red_arrow_down_crash_400_wht_2751Many will challenge this assertion by saying “But competition drives up performance“.  Actually, it is not as simple as that. Competition will weed out the weakest who “die” and remove themselves from the equation – apparently increasing the average. What actually drives improvement is customer choice. Organisations that are able to self-improve will create higher-quality and lower-cost products and in a globally-connected-economy the customers will vote with their wallets. The greedy and selfish competition lags behind.

So, to ensure survival in a global economy the Seventh Flow cannot be rigidly restricted by annually allocated departmental budgets. It is a dinosaur design.

And there is no difference between public and private organisations. The laws of cash-flow physics are universal.

How then is the cash flow controlled?

The “trick” is to design a monitoring and feedback component into the system design. This is called the Sixth Flow – and it must be designed so that just the right amount of cash is pulled to the just the right places and at just the right time and for just as long as needed to maximise the revenue.  The rest of the design – First Flow to Fifth Flow ensure the total amount of cash needed is a minimum.  All Seven Flows are needed.

So the essential ingredient for financial stability and survival is Sixth and Seventh Flow Design capability. That skill has another name – it is called Value Stream Accounting which is a component of complex adaptive systems engineering (CASE).

What? Never heard of Value Stream Accounting?

Maybe that is just another Error of Omission?

Creep-Crack-Crunch

The current crisis of confidence in the NHS has all the hallmarks of a classic system behaviour called creep-crack-crunch.

The first obvious crunch may feel like a sudden shock but it is usually not a complete surprise and it is actually one of a series of cracks that are leading up to a BIG CRUNCH. These cracks are an early warning sign of pressure building up in parts of the system and causing localised failures. These cracks weaken the whole system. The underlying cause is called creep.

SanFrancisco_PostEarthquake

Earthquakes are a perfect example of this phenomemon. Geological time scales are measured in thousands of years and we now know that the surface of the earth is a dynamic structure with vast contient-sized plates of solid rock floating on a liquid core of molten magma. Over millions of years the continents have moved huge distances and the world we see today on our satellite images is just a single frame in a multi-billion year geological video.  That is the geological creep bit. The cracks first appear at the edges of these tectonic plates where they smash into each other, grind past each other or are pulled apart from each other.  The geological hot-spots are marked out on our global map by lofty mountain ranges, fissured earthquake zones, and deep mid-ocean trenches. And we know that when a geological crunch arrives it happens in a blink of the geological eye.

The panorama above shows the devastation of San Francisco caused by the 1906 earthquake. San Francisco is built on the San Andreas Fault – the junction between the Pacific plate and the North American plate. The dramatic volcanic eruption in Iceland in 2010 came and went in a matter of weeks but the irreversible disruption it caused for global air traffic will be felt for years. The undersea earthquakes that caused the devastating tsunamis in 2006 and 2011 lasted only a few minutes; the deadly shock waves crossed an ocean in a matter of hours; and when they arrived the silent killer wiped out whole shoreside communities in seconds. Tens of thousands of lives were lost and the social after-shocks of that geological-crunch will be felt for decades.

These are natural disasters. We have little or no influence over them. Human-engineered disasters are a different matter – and they are just as deadly.

The NHS is an example. We are all painfully aware of the recent crisis of confidence triggered by the Francis Report. Many could see the cracks appearing and tried to blow their warning whistles but with little effect – they were silenced with legal gagging clauses and the opening cracks were papered over. It was only after the crunch that we finally acknowledged what we already knew and we started to search for the creep. Remorse and revenge does not bring back those who have been lost.  We need to focus on the future and not just point at the past.

UK_PopulationPyramid_2013Socio-economic systems evolve at a pace that is measured in years. So when a social crunch happens it is necessary to look back several decades for the tell-tale symptoms of creep and the early signs of cracks appearing.

Two objective measures of a socio-economic system are population and expenditure.

Population is people-in-progress; and national expenditure is the flow of the cash required to keep the people-in-progress watered, fed, clothed, housed, healthy and occupied.

The diagram above is called a population pyramid and it shows the distribution by gender and age of the UK population in 2013. The wobbles tell a story. It does rather look like the profile of a bushy-eyebrowed, big-nosed, pointy-chinned old couple standing back-to-back and maybe there is a hidden message for us there?

The “eyebrow” between ages 67 and 62 is the increase in births that happened 62 to 67 years ago: betwee 1946 and 1951. The post WWII baby boom.  The “nose” of 42-52 year olds are the “children of the 60’s” which was a period of rapid economic growth and new optimism. The “upper lip” at 32-42 correlates with the 1970’s that was a period of stagnant growth,  high inflation, strikes, civil unrest and the dark threat of global thermonuclear war. This “stagflation” is now believed to have been triggered by political meddling in the Middle-East that led to the 1974 OPEC oil crisis and culminated in the “winter of discontent” in 1979.  The “chin” signals there was another population expansion in the 1980s when optimism returned (SALT-II was signed in 1979) and the economy was growing again. Then the “neck” contraction in the 1990’s after the 1987 Black Monday global stock market crash.  Perhaps the new optimism of the Third Millenium led to the “chest” expansion but the financial crisis that followed the sub-prime bubble to burst in 2008 has yet to show its impact on the population chart. This static chart only tells part of the story – the animated chart reveals a significant secondary expansion of the 20-30 year old age group over the last decade. This cannot have been caused by births and is evidence of immigration of a large number of young couples – probably from the expanding Europe Union.

If this “yo-yo” population pattern is repeated then the current economic downturn will be followed by a contraction at the birth end of the spectrum and possibly also net emigration. And that is a big worry because each population wave takes a 100 years to propagate through the system. The most economically productive population – the  20-60 year olds  – are the ones who pay the care bills for the rest. So having a population curve with lots of wobbles in it causes long term socio-economic instability.

Using this big-picture long-timescale perspective; evidence of an NHS safety and quality crunch; silenced voices of cracks being papered-over; let us look for the historical evidence of the creep.

Nowadays the data we need is literally at our fingertips – and there is a vast ocean of it to swim around in – and to drown in if we are not careful.  The Office of National Statistics (ONS) is a rich mine of UK socioeconomic data – it is the source of the histogram above.  The trick is to find the nuggets of knowledge in the haystack of facts and then to convert the tables of numbers into something that is a bit more digestible and meaningful. This is what Russ Ackoff descibes as the difference between Data and Information. The data-to-information conversion needs context.

Rule #1: Data without context is meaningless – and is at best worthless and at worse is dangerous.

boxes_connected_PA_150_wht_2762With respect to the NHS there is a Minotaur’s Labyrinth of data warehouses – it is fragmented but it is out there – in cyberspace. The Department of Health publishes some on public sites but it is a bit thin on context so it can be difficult to extract the meaning.

Relying on our memories to provide the necessary context is fraught with problems. Memories are subject to a whole range of distortions, deletions, denials and delusions.  The NHS has been in existence since 1948 and there are not many people who can personally remember the whole story with objective clarity.  Fortunately cyberspace again provides some of what we need and with a few minutes of surfing we can discover something like a website that chronicles the history of the NHS in decades from its creation in 1948 – http://www.nhshistory.net/ – created and maintained by one person and a goldmine of valuable context. The decade that is of particular interest is 1998-2007 – Chapter 6

With just some data and some context it is possible to pull together the outline of the bigger picture of the decade that led up to the Mid Staffordshire healthcare quality crunch.

We will look at this as a NHS system evolving over time within its broader UK context. Here is the time-series chart of the population of England – the source of the demand on the NHS.

Population_of_England_1984-2010This shows a significant and steady increase in population – 12% overall between 1984 an 2012.

This aggregate hides a 9% increase in the under 65 population and 29% growth in the over 65 age group.

This is hard evidence of demographic creep – a ticking health and social care time bomb. And the curve is getting steeper. The pressure is building.

The next bit of the map we need is a measure of the flow through hospitals – the activity – and this data is available as the annual HES (Hospital Episodes Statistics) reports.  The full reports are hundreds of pages of fine detail but the headline summaries contain enough for our present purpose.

NHS_HES_Admissions_1997-2011

The time- series chart shows a steady increase in hospital admissions. Drilling into the summaries revealed that just over a third are emergency admissions and the rest are planned or maternity.

In the decade from 1998 to 2008 there was a 25% increase in hospital activity. This means more work for someone – but how much more and who for?

But does it imply more NHS beds?

Beds require wards, buildings and infrastructure – but it is the staff that deliver the health care. The bed is just a means of storage.  One measure of capacity and cost is the number of staffed beds available to be filled.  But this like measuring the number of spaces in a car park – it does not say much about flow – it is a just measure of maximum possible work in progress – the available space to hold the queue of patients who are somewhere between admission and discharge.

Here is the time series chart of the number of NHS beds from 1984 to 2006. The was a big fall in the number of beds in the decade after 1984 [Why was that?]

NHS_Beds_1984-2006

Between 1997 and 2007 there was about a 10% fall in the number of beds. The NHS patient warehouse was getting smaller.

But the activity – the flow – grew by 25% over the same time period: so the Laws Of Physics say that the flow must have been faster.

The average length of stay must have been falling.

This insight has another implication – fewer beds must mean smaller hospitals and lower costs – yes?  After all everyone seems to equate beds-to-cost; more-beds-cost-more less-beds-cost-less. It sounds reasonable. But higher flow means more demand and more workload so that would require more staff – and that means higher costs. So which is it? Less, the same or more cost?

NHS_Employees_1996_2007The published data says that staff headcount  went up by 25% – which correlates with the increase in activity. That makes sense.

And it looks like it “jumped” up in 2003 so something must have triggered that. More cash pumped into the system perhaps? Was that the effect of the Wanless Report?

But what type of staff? Doctors? Nurses? Admin and Clerical? Managers?  The European Working Time Directive (EWTD) forced junior doctors hours down and prompted an expansion of consultants to take on the displaced service work. There was also a gradual move towards specialisation and multi-disciplinary teams. What impact would that have on cost? Higher most likely. The system is getting more complex.

Of course not all costs have the same impact on the system. About 4% of staff are classified as “management” and it is this group that are responsible for strategic and tactical planning. Managers plan the work – workers work the plan.  The cost and efficiency of the management component of the system is not as useful a metric as the effectiveness of its collective decision making. Unfortuately there does not appear to be any published data on management decision making qualty and effectiveness. So we cannot estimate cost-effectiveness. Perhaps that is because it is not as easy to measure effectiveness as it is to count admissions, discharges, head counts, costs and deaths. Some things that count cannot easily be counted. The 4% number is also meaningless. The human head represents about 4% of the bodyweight of an adult person – and we all know that it is not the size of our heads that is important it is the effectiveness of the decisions that it makes which really counts!  Effectiveness, efficiency and costs are not the same thing.

Back to the story. The number of beds went down by 10% and number of staff went up by 25% which means that the staff-per-bed ratio went up by nearly 40%.  Does this mean that each bed has become 25% more productive or 40% more productive or less productive? [What exactly do we mean by “productivity”?]

To answer that we need to know what the beds produced – the discharges from hospital and not just the total number, we need the “last discharges” that signal the end of an episode of hospital care.

NHS_LastDischarges_1998-2011The time-series chart of last-discharges shows the same pattern as the admissions: as we would expect.

This output has two components – patients who leave alive and those who do not.

So what happened to the number of deaths per year over this period of time?

That data is also published annually in the Hospital Episode Statistics (HES) summaries.

This is what it shows ….

NHS_Absolute_Deaths_1998-2011The absolute hospital mortality is reducing over time – but not steadily. It went up and down between 2000 and 2005 – and has continued on a downward trend since then.

And to put this into context – the UK annual mortality is about 600,000 per year. That means that only about 40% of deaths happen in hospitals. UK annual mortality is falling and births are rising so the population is growing bigger and older.  [My head is now starting to ache trying to juggle all these numbers and pictures in it].

This is not the whole story though – if the absolute hospital activity is going up and the absolute hospital mortality is going down then this raw mortality number may not be telling the whole picture. To correct for those effects we need the ratio – the Hospital Mortality Ratio (HMR).

NHS_HospitalMortalityRatio_1998-2011This is the result of combining these two metrics – a 40% reduction in the hospital mortality ratio.

Does this mean that NHS hospitals are getting safer over time?

This observed behaviour can be caused by hospitals getting safer – it can also be caused by hospitals doing more low-risk work that creates a dilution effect. We would need to dig deeper to find out which. But that will distract us from telling the story.

Back to productivity.

The other part of the productivity equation is cost.

So what about NHS costs?  A bigger, older population, more activity, more staff, and better outcomes will all cost more taxpayer cash, surely! But how much more?  The activity and head count has gone up by 25% so has cost gone up by the same amount?

NHS_Annual_SpendThis is the time-series chart of the cost per year of the NHS and because buying power changes over time it has been adjusted using the Consumer Price Index using 2009 as the reference year – so the historical cost is roughly comparable with current prices.

The cost has gone up by 100% in one decade!  That is a lot more than 25%.

The published financial data for 2006-2010 shows that the proportion of NHS spending that goes to hospitals is about 50% and this has been relatively stable over that period – so it is reasonable to say that the increase in cash flowing to hospitals has been about 100% too.

So if the cost of hospitals is going up faster than the output then productivity is falling – and in this case it works out as a 37% drop in productivity (25% increase in activity for 100% increase in cost = 37% fall in productivity).

So the available data which anyone with a computer, an internet connection, and some curiosity can get; and with bit of spreadsheet noggin can turn into pictures shows that over the decade of growth that led up to the the Mid Staffs crunch we had:

1. A slightly bigger population; and a
2. significantly older population; and a
3. 25% increase in NHS hospital activity; and a
4. 10% fall in NHS beds; and a
5. 25% increase in NHS staff; which gives a
6. 40% increase in staff-per-bed ratio; an an
7. 8% reduction in absolute hospital mortality; which gives a
8. 40% reduction in relative hospital mortality; and a
9. 100% increase in NHS  hospital cost; which gives a
10. 37% fall drop in “hospital productivity”.

An experienced Improvement Scientist knows that a system that has been left to evolve by creep-crack-and-crunch can be re-designed to deliver higher quality and higher flow at lower total cost.

The safety creep at Mid-Staffs is now there for all to see. A crack has appeared in our confidence in the NHS – and raises a couple of crunch questions:

Where Has All The Extra Money Gone?

 How Will We Avoid The BIG CRUNCH?

The huge increase in NHS funding over the last decade was the recommendation of the Wanless Report but the impact of implementing the recommendations has never been fully explored. Healthcare is a service system that is designed to deliver two intangible products – health and care. So the major cost is staff-time – particularly the clinical staff.  A 25% increase in head count and a 100% increase in cost implies that the heads are getting more expensive.  Either a higher proportion of more expensive clinically trained and registered staff, or more pay for the existing staff or both.  The evidence shows that about 50% of NHS Staff are doctors and nurses and over the last decade there has been a bigger increase in the number of doctors than nurses. Added to that the Agenda for Change programme effectively increased the total wage bill and the new contracts for GPs and Consultants added more upward wage pressure.  This is cost creep and it adds up over time. The Kings Fund looked at the impact in 2006 and suggested that, in that year alone, 72% of the additional money was sucked up by bigger wage bills and other cost-pressures! The previous year they estimated 87% of the “new money” had disappeared hte same way. The extra cash is gushing though the cracks in the bottom of the fiscal bucket that had been clumsily papered-over. And these are recurring revenue costs so they add up over time into a future financial crunch.  The biggest one may be yet to come – the generous final-salary pensions that public-sector employees enjoy!

So it is even more important that the increasingly expensive clinical staff are not being forced to spend their time doing work that has no direct or indirect benefit to patients.

Trying to do a good job in a poorly designed system is both frustrating and demotivating – and the outcome can be a cynical attitude of “I only work here to pay the bills“. But as public sector wages go up and private sector pensions evaporate the cynics are stuck in a miserable job that they cannot afford to give up. And their negative behaviour poisons the whole pool. That is the long term cumulative cultural and financial cost of poor NHS process design. That is the outcome of not investing earlier in developing an Improvement Science capability.

The good news is that the time-series charts illustrate that the NHS is behaving like any other complex, adaptive, human-engineered value system. This means that the theory, techniques and tools of Improvement Science and value system design can be applied to answer these questions. It means that the root causes of the excessive costs can be diagnosed and selectively removed without compromising safety and quality. It means that the savings can be wisely re-invested to improve the resilience of some parts and to provide capacity in other parts to absorb the expected increases in demand that are coming down the population pipe.

This is Improvement Science. It is a learnable skill.

18/03/2013: Update

The question “Where Has The Money Gone?” has now been asked at the Public Accounts Committee

 

What Can I Do To Help?

stick_figures_moving_net_150_wht_8609The growing debate about the safety of our health care systems is gaining momentum.

This is not just a UK phenomenon.

The same question was being asked 10 years ago across the pond by many people – perhaps the most familiar name is Don Berwick.

The term Improvement Science has been buzzing around for a long time. This is a global – not just a local challenge.

Seeing the shameful reality in black-and-white [the Francis Report] is a nasty shock to everyone. There are no winners here. Our blissful ignorance is gone. Painful awareness has arrived.

The usual emotional reaction to being shoved from blissful ignorance into painful awareness is characteristic;  and it does not matter if it is discovering horse in your beef pie or hearing of 1200 avoidable deaths in a UK hospital.

Our emotional reaction is a predictable sequence that goes something like:

Shock => Denial => Anger =>Bargaining =>Depression =>Acceptance

=> Resolution.

It is the psychological healing process that is called the grief reaction and it is a normal part of the human psyche. We all do it. And we do it both individually and collectively. I remember well the global grief reactions that followed the sudden explosion of Challenger; the sudden death of Princess Diana; and the sudden collapse of the Twin Towers.

Fortunately such avoidable tragedies are uncommon.

The same chain-reaction happens to a lesser degree in any sudden change. We grieve the loss of our old way of thinking – we mourn the passing away our comfortable rhetoric that has been rudely and suddenly disproved by harsh reality. This is the Nerve Curve.  And learning to ride it safely is a critical-to-survival life skill.  Especially in turbulent times.

The UK population has suffered two psychological shocks in recent weeks – the discovery of horse in the beef pie and the fuller public disclosure of the story behind the 1000’s of avoidable deaths in one of our Trust hospitals. Both are now escalating and the finger of blame is pointing squarely at a common cause: the money-tail-wagging-the-safety-dog.

So what will happen next?  The Wall of Denial has been dynamited with hard evidence. We are now into the Collective Anger phase.

First there will be widespread righteous indignation and a strong desire to blame, to hunt down the evil ones, and to crucify the responsible and accountable. Partly as punishment, partly as a lesson to others, and partly to prevent them doing harm again.  Uncontrolled anger is dangerous especially when there is a lethal weapon to hand. The more controlled, action-oriented and future-focused will want to do something about it. Now! There will be rallies, and soap-boxes, and megaphones. The We-Told-You-So brigade will get shoved aside and trampled in the rush to do something – ANYTHING. Conferences will be hastily arranged and those most fearful for their reputations and jobs will cough up the cash and clear their diaries. They will be expected to be there. They will be. Desperately looking for answers. Anxiously seeking credible leaders. And the snake-oil salesmen will have a bonanza! The calmer, more reflective, phlegmatic, academic types will call for more money for more research so that we can fully analyse and fully understand the problem before we do anything.

And while the noisy bargaining for more cash keeps everyone busy the harm will continue to happen.

Eventually the message will sink in as the majority accept that there is no way to change the past; that we cannot cling to what is out-of-date thinking; and that all of our new-reality-avoiding tactics are fruitless. And we are forced to accept that there is no more cash. Now we are in danger of becoming helpless and hopeless, slipping into depression, and then into despair. We are at risk of giving up and letting ourselves wallow and drown in self-pity. This is a dangerous phase. Depression is understandable but it is avoidable because there is always something than can be done. We can always ask the elephant-in-the-room questions. Inside we usually know the answers.

We accept the new reality; we accept that we cannot change the past, we accept that we have some learning to do; we accept that we have to adjust; and we accept that all of us can do something.

Now we have reached the most important stage – resolution. This is the test of our resolve. Are we all-talk or can we convert talk-to-walk?

stick_figure_help_button_150_wht_9911We can all ask ourselves one question: “What can I do to help?”

I have asked myself that question and my first answer was “As a system designer I can help by looking at this challenge as a design assignment and describe what I see “.

Design starts with the intended outcome, the vision, the goal, the objective, the specification, the target.

The design goal is: Significant reduction in avoidable harm in the NHS, quickly, and at no extra cost.

[Please note that a design goal is a “what we get” not a “what we do”. It is a purpose and not just a process.]

Now we can invite, gather, dream-up, brain-storm any number of design options and then we can consider logically and rationally how well they might meet our design goal.

What are some of the design options on the table?

Design Option 1. Create a cadre of hospital inspectors.

Nope – that will take time and money and inspection alone does not guarantee better outcomes. We have enough evidence of that.

Design Option 2. Get lots more PhDs funded, do high quality academic research, write papers, publish them and hope the evidence is put into practice.

Nope – that will take time and money too and publication alone does not guarantee adoption of the lessons and delivery of better outcomes. We have enough evidence of that too. What is proven to be efficacious in a research trial is not necessarily effective, practical or affordable  in reality.  

Design Option 3. Put together conferences and courses to teach/train a new generation of competent healthcare improvement practitioners.

Maybe – it has the potential to deliver the outcome but it too will take time and money. We have been doing conferences and courses for decades – they are not very cost-effective. The Internet may have changed things though. 

Design Option 4. All of the above plus broadcast via the Internet the current pragmatic know-how of the basics of safe system design to everyone in the NHS so that they know what is possible and they know how to get started.

Promising – it has the greatest potential to deliver the required outcome, a broadcast will cost nothing and it can start working immediately.

OK – Option 4 it is – here we go …

The Basics of How To Design a Safe System

Definition 1: Safe means free of risk of harm.

Definition 2Harm is the result of hazards combining with risks.

There are two components to safe system design – the people stuff and the process stuff.

For example a busy main road is designed to facilitate the transport of stuff from A to B. It also represents a hazard – the potential for harm. If the vehicles bump into each other or other things then harm will result. So a lot of the design of the vehicles and the roads is about reducing the risk of bumps or mitigating the effects (e.g. seat-belts).

The risk is multi-factorial. If you drive at high speed, under the influence of recreational drugs, at night, on an icy road then the probability of having a bump is high.  If you step into a busy road without looking then the risk of getting bumped into is high too.

So the path to better safety is to eliminate as many hazards as possible and to reduce the risks as much as possible. And we have to do that without unintentionally creating more hazards, higher risks, excessive delays and higher costs.

So how is this done outside healthcare?

One tried-and-tested method for designing safer processes is called FMEA – Failure Modes and Effects Analysis.

Now that sounds really nerdy and it is.  It is an attention-to-detail exercise that will make your brain ache and your eyes bleed. But it works – so it is worthwhile learning the basic principles.

For the people part there is the whole body of Human Factors Research to access. This is also a bit nerdy for us hands-on oily-rag pragmatists so if you want something more practical immediately then have a go with The 4N Chart and the Niggle-o-Gram (which is a form of emotional FMEA). This short summary is also free to download, read, print, copy, share, discuss and use.

OK – I am off to design and build something else – an online course for teaching safety-by-design.

What are you going to do to help improve safety in the NHS?

The Writing on the Wall – Part II

Who_Is_To_BlameThe retrospectoscope is the favourite instrument of the forensic cynic – the expert in the after-the-event-and-I-told-you-so rhetoric. The rabble-rouser for the lynch-mob.

It feels better to retrospectively nail-to-a-cross the person who committed the Cardinal Error of Omission, and leave them there in emotional and financial pain as a visible lesson to everyone else.

This form of public feedback has been used for centuries.

It is called barbarism, and it has no place in a modern civilised society.


A more constructive question to ask is:

Could the evolving Mid-Staffordshire crisis have been detected earlier … and avoided?”

And this question exposes a tricky problem: it is much more difficult to predict the future than to explain the past.  And if it could have been detected and avoided earlier, then how is that done?  And if the how-is-known then is everyone else in the NHS using this know-how to detect and avoid their own evolving Mid-Staffs crisis?

To illustrate how it is currently done let us use the actual Mid-Staffs data. It is conveniently available in Figure 1 embedded in Figure 5 on Page 360 in Appendix G of Volume 1 of the first Francis Report.  If you do not have it at your fingertips I have put a copy of it below.

MS_RawData

The message does not exactly leap off the page and smack us between the eyes does it? Even with the benefit of hindsight.  So what is the problem here?

The problem is one of ergonomics. Tables of numbers like this are very difficult for most people to interpret, so they create a risk that we ignore the data or that we just jump to the bottom line and miss the real message. And It is very easy to miss the message when we compare the results for the current period with the previous one – a very bad habit that is spread by accountants.

This was a slowly emerging crisis so we need a way of seeing it evolving and the better way to present this data is as a time-series chart.

As we are most interested in safety and outcomes, then we would reasonably look at the outcome we do not want – i.e. mortality.  I think we will all agree that it is an easy enough one to measure.

MS_RawDeathsThis is the raw mortality data from the table above, plotted as a time-series chart.  The green line is the average and the red-lines are a measure of variation-over-time. We can all see that the raw mortality is increasing and the red flags say that this is a statistically significant increase. Oh dear!

But hang on just a minute – using raw mortality data like this is invalid because we all know that the people are getting older, demand on our hospitals is rising, A&Es are busier, older people have more illnesses, and more of them will not survive their visit to our hospital. This rise in mortality may actually just be because we are doing more work.

Good point! Let us plot the activity data and see if there has been an increase.

MS_Activity

Yes – indeed the activity has increased significantly too.

Told you so! And it looks like the activity has gone up more than the mortality. Does that mean we are actually doing a better job at keeping people alive? That sounds like a more positive message for the Board and the Annual Report. But how do we present that message? What about as a ratio of mortality to activity? That will make it easier to compare ourselves with other hospitals.

Good idea! Here is the Raw Mortality Ratio chart.

MS_RawMortality_RatioAh ha. See! The % mortality is falling significantly over time. Told you so.

Careful. There is an unstated assumption here. The assumption that the case mix is staying the same over time. This pattern could also be the impact of us doing a greater proportion of lower complexity and lower risk work.  So we need to correct this raw mortality data for case mix complexity – and we can do that by using data from all NHS hospitals to give us a frame of reference. Dr Foster can help us with that because it is quite a complicated statistical modelling process. What comes out of Dr Fosters black magic box is the Global Hospital Raw Mortality (GHRM) which is the expected number of deaths for our case mix if we were an ‘average’ NHS hospital.

MS_ExpectedMortality_Ratio

What this says is that the NHS-wide raw mortality risk appears to be falling over time (which may be for a wide variety of reasons but that is outside the scope of this conversation). So what we now need to do is compare this global raw mortality risk with our local raw mortality risk  … to give the Hospital Standardised Mortality Ratio.

MS_HSMRThis gives us the Mid Staffordshire Hospital HSMR chart.  The blue line at 100 is the reference average – and what this chart says is that Mid Staffordshire hospital had a consistently higher risk than the average case-mix adjusted mortality risk for the whole NHS. And it says that it got even worse after 2001 and that it stayed consistently 20% higher after 2003.

Ah! Oh dear! That is not such a positive message for the Board and the Annual Report. But how did we miss this evolving safety catastrophe?  We had the Dr Foster data from 2001

This is not a new problem – a similar thing happened in Vienna between 1820 and 1850 with maternal deaths caused by Childbed Fever. The problem was detected by Dr Ignaz Semmelweis who also discovered a simple, pragmatic solution to the problem: hand washing.  He blew the whistle but unfortunately those in power did not like the implication that they had been the cause of thousands of avoidable mother and baby deaths.  Semmelweis was vilified and ignored, and he did not publish his data until 1861. And even then the story was buried in tables of numbers.  Semmelweis went mad trying to convince the World that there was a problem.  Here is the full story.

Also, time-series charts were not invented until 1924 – and it was not in healthcare – it was in manufacturing. These tried-and-tested safety and quality improvement tools are only slowly diffusing into healthcare because the barriers to innovation appear somewhat impervious.

And the pores have been clogged even more by the social poison called “cynicide” – the emotional and political toxin exuded by cynics.

So how could we detect a developing crisis earlier – in time to avoid a catastrophe?

The first step is to estimate the excess-death-equivalent. Dr Foster does this for you.MS_ExcessDeathsHere is the data from the table plotted as a time-series chart that shows that the estimated-excess-death-equivalent per year. It has an average of 100 (that is two per week) and the average should be close to zero. More worryingly the number was increasing steadily over time up to 200 per year in 2006 – that is about four excess deaths per week – on average.  It is important to remember that HSMR is a risk ratio and mortality is a multi-factorial outcome. So the excess-death-equivalent estimate does not imply that a clear causal chain will be evident in specific deaths. That is a complete misunderstanding of the method.

I am sorry – you are losing me with the statistical jargon here. Can you explain in plain English what you mean?

OK. Let us use an example.

Suppose we set up a tombola at the village fete and we sell 50 tickets with the expectation that the winner bags all the money. Each ticket holder has the same 1 in 50 risk of winning the wad-of-wonga and a 49 in 50 risk of losing their small stake. At the appointed time we spin the barrel to mix up the ticket stubs then we blindly draw one ticket out. At that instant the 50 people with an equal risk changes to one winner and 49 losers. It is as if the grey fog of risk instantly condenses into a precise, black-and-white, yes-or-no, winner-or-loser, reality.

Translating this concept back into HSMR and Mid Staffs – the estimated 1200 deaths are the just the “condensed risk of harm equivalent”.  So, to then conduct a retrospective case note analysis of specific deaths looking for the specific cause would be equivalent to trying to retrospectively work out the reason the particular winning ticket in the tombola was picked out. It is a search that is doomed to fail. To then conclude from this fruitless search that HSMR is invalid, is only to compound the delusion further.  The actual problem here is ignorance and misunderstanding of the basic Laws of Physics and Probability, because our brains are not good at solving these sort of problems.

But Mid Staffs is a particularly severe example and  it only shows up after years of data has accumulated. How would a hospital that was not as bad as this know they had a risk problem and know sooner? Waiting for years to accumulate enough data to prove there was a avoidable problem in the past is not much help. 

That is an excellent question. This type of time-series chart is not very sensitive to small changes when the data is noisy and sparse – such as when you plot the data on a month-by-month timescale and avoidable deaths are actually an uncommon outcome. Plotting the annual sum smooths out this variation and makes the trend easier to see, but it delays the diagnosis further. One way to increase the sensitivity is to plot the data as a cusum (cumulative sum) chart – which is conspicuous by its absence from the data table. It is the running total of the estimated excess deaths. Rather like the running total of swings in a game of golf.

MS_ExcessDeaths_CUSUMThis is the cusum chart of excess deaths and you will notice that it is not plotted with control limits. That is because it is invalid to use standard control limits for cumulative data.  The important feature of the cusum chart is the slope and the deviation from zero. What is usually done is an alert threshold is plotted on the cusum chart and if the measured cusum crosses this alert-line then the alarm bell should go off – and the search then focuses on the precursor events: the Near Misses, the Not Agains and the Niggles.

I see. You make it look easy when the data is presented as pictures. But aren’t we still missing the point? Isn’t this still after-the-avoidable-event analysis?

Yes! An avoidable death should be a Never-Event in a designed-to-be-safe healthcare system. It should never happen. There should be no coffins to count. To get to that stage we need to apply exactly the same approach to the Near-Misses, and then the Not-Agains, and eventually the Niggles.

You mean we have to use the SUI data and the IR1 data and the complaint data to do this – and also ask our staff and patients about their Niggles?

Yes. And it is not the number of complaints that is the most useful metric – it is the appearance of the cumulative sum of the complaint severity score. And we need a method for diagnosing and treating the cause of the Niggles too. We need to convert the feedback information into effective action.

Ah ha! Now I understand what the role of the Governance Department is: to apply the tools and techniques of Improvement Science proactively.  But our Governance Department have not been trained to do this!

Then that is one place to start – and their role needs to evolve from Inspectors and Supervisors to Demonstrators and Educators – ultimately everyone in the organisation needs to be a competent Healthcare Improvementologist.

OK – I now now what to do next. But wait a minute. This is going to cost a fortune!

This is just one small first step.  The next step is to redesign the processes so the errors do not happen in the first place. The cumulative cost saving from eliminating the repeated checking, correcting, box-ticking, documenting, investigating, compensating and insuring is much much more than the one-off investment in learning safe system design.

So the Finance Director should be a champion for safety and quality too.

Yup!

Brill. Thanks. And can I ask one more question? I do not want to appear to skeptical but how do we know we can trust that this risk-estimation system has been designed and implemented correctly? How do we know we are not being bamboozled by statisticians? It has happened before!

That is the best question yet.  It is important to remember that HSMR is counting deaths in hospital which means that it is not actually the risk of harm to the patient that is measured – it is the risk to the reputation of hospital! So the answer to your question is that you demonstrate your deep understanding of the rationle and method of risk-of-harm estimation by listing all the ways that such a system could be deliberately “gamed” to make the figures look better for the hospital. And then go out and look for hard evidence of all the “games” that you can invent. It is a sort of creative poacher-becomes-gamekeeper detective exercise.

OK – I sort of get what you mean. Can you give me some examples?

Yes. The HSMR method is based on deaths-in-hospital so discharging a patient from hospital before they die will make the figures look better. Suppose one hospital has more access to end-of-life care in the community than another: their HSMR figures would look better even though exactly the same number of people died. Another is that the HSMR method is weighted towards admissions classified as “emergencies” – so if a hospital admits more patients as “emergencies” who are not actually very sick and discharges them quickly then this will inflated their estimated deaths and make their actual mortality ratio look better – even though the risk-of-harm to patients has not changed.

OMG – so if we have pressure to meet 4 hour A&E targets and we get paid more for an emergency admission than an A&E attendance then admitting to an Assessmen Area and discharging within one day will actually reward the hospital financially, operationally and by apparently reducing their HSMR even though there has been no difference at all to the care that patients actually recieve?

Yes. It is an inevitable outcome of the current system design.

But that means that if I am gaming the system and my HSMR is not getting better then the risk-of-harm to patients is actually increasing and my HSMR system is giving me false reassurance that everything is OK.   Wow! I can see why some people might not want that realisation to be public knowledge. So what do we do?

Design the system so that the rewards are aligned with lower risk of harm to patients and improved outcomes.

Is that possible?

Yes. It is called a Win-Win-Win design.

How do we learn how to do that?

Improvement Science.

Footnote I:

The graphs tell a story but they may not create a useful sense of perspective. It has been said that there is a 1 in 300 chance that if you go to hospital you will not leave alive for avoidable causes. What! It cannot be as high as 1 in 300 surely?

OK – let us use the published Mid-Staffs data to test this hypothesis. Over 12 years there were about 150,000 admissions and an estimated 1,200 excess deaths (if all the risk were concentrated into the excess deaths which is not what actually happens). That means a 1 in 130 odds of an avoidable death for every admission! That is twice as bad as the estimated average.

The Mid Staffordshire statistics are bad enough; but the NHS-as-a-whole statistics are cumulatively worse because there are 100’s of other hospitals that are each generating not-as-obvious avoidable mortality. The data is very ‘noisy’ so it is difficult even for a statistical expert to separate the message from the morass.

And remember – that  the “expected” mortality is estimated from the average for the whole NHS – which means that if this average is higher than it could be then there is a statistical bias and we are being falsely reassured by being ‘not statistically significantly different’ from the pack.

And remember too – for every patient and family that suffers and avoidable death there are many more that have to live with the consequences of avoidable but non-fatal harm.  That is called avoidable morbidity.  This is what the risk really means – everyone has a higher risk of some degree of avoidable harm. Psychological and physical harm.

This challenge is not just about preventing another Mid Staffs – it is about preventing 1000’s of avoidable deaths and 100,000s of patients avoidably harmed every year in ‘average’ NHS trusts.

It is not a mass conspiracy of bad nurses, bad doctors, bad managers or bad policians that is the root cause.

It is poorly designed processes – and they are poorly designed because the nurses, doctors and managers have not learned how to design better ones.  And we do not know how because we were not trained to.  And that education gap was an accident – an unintended error of omission.  

Our urgently-improve-NHS-safety-challenge requires a system-wide safety-by-design educational and cultural transformation.

And that is possible because the knowledge of how to design, test and implement inherently safe processes exists. But it exists outside healthcare.

And that safety-by-design training is a worthwhile investment because safer-by-design processes cost less to run because they require less checking, less documenting, less correcting – and all the valuable nurse, doctor and manager time freed up by that can be reinvested in more care, better care and designing even better processes and systems.

Everyone Wins – except the cynics who have a choice: to eat humble pie or leave.

Footnote II:

In the debate that has followed the publication of the Francis Report a lot of scrutiny has been applied to the method by which an estimated excess mortality number is created and it is necessary to explore this in a bit more detail.

The HSMR is an estimate of relative risk – it does not say that a set of specific patients were the ones who came to harm and the rest were OK. So looking at individual deaths and looking for the specific causes is to completely misunderstand the method. So looking at the actual deaths individually and looking for identifiable cause-and-effect paths is an misuse of the message.  When very few if any are found to conclude that HSMR is flawed is an error of logic and exposes the ignorance of the analyst further.

HSMR is not perfect though – it has weaknesses.  It is a benchmarking process the”standard” of 100 is always moving because the collective goal posts are moving – the reference is always changing . HSMR is estimated using data submitted by hospitals themselves – the clinical coding data.  So the main weakness is that it is dependent on the quality of the clinicial coding – the errors of comission (wrong codes) and the errors of omission (missing codes). Garbage In Garbage Out.

Hospitals use clinically coded data for other reasons – payment. The way hospitals are now paid is based on the volume and complexity of that activity – Payment By Results (PbR) – using what are called Health Resource Groups (HRGs). This is a better and fairer design because hospitals with more complex (i.e. costly to manage) case loads get paid more per patient on average.  The HRG for each patient is determined by their clinical codes – including what are called the comorbidities – the other things that the patient has wrong with them. More comorbidites means more complex and more risky so more money and more risk of death – roughly speaking.  So when PbR came in it becamevery important to code fully in order to get paid “properly”.  The problem was that before PbR the coding errors went largely unnoticed – especially the comorbidity coding. And the errors were biassed – it is more likely to omit a code than to have an incorrect code. Errors of omission are harder to detect. This meant that by more complete coding (to attract more money) the estimated casemix complexity would have gone up compared with the historical reference. So as actual (not estimated) NHS mortality has gone down slightly then the HSMR yardstick becomes even more distorted.  Hospitals that did not keep up with the Coding Game would look worse even though  their actual risk and mortality may be unchanged.  This is the fundamental design flaw in all types of  benchmarking based on self-reported data.

The actual problem here is even more serious. PbR is actually a payment for activity – not a payment for outcomes. It is calculated from what it cost to run the average NHS hospital using a technique called Reference Costing which is the same method that manufacturing companies used to decide what price to charge for their products. It has another name – Absorption Costing.  The highest performers in the manufacturing world no longer use this out-of-date method. The implication of using Reference Costing and PbR in the NHS are profound and dangerous:

If NHS hospitals in general have poorly designed processes that create internal queues and require more bed days than actually necessary then the cost of that “waste” becomes built into the future PbR tariff. This means average length of stay (LOS) is financially rewarded. Above average LOS is financially penalised and below average LOS makes a profit.  There is no financial pressure to improve beyound average. This is called the Regression to the Mean effect.  Also LOS is not a measure of quality – so there is a to shorten length of stay for purely financial reasons – to generate a surplus to use to fund growth and capital investment.  That pressure is non-specific and indiscrimiate.  PbR is necessary but it is not sufficient – it requires an quality of outcome metric to complete it.    

So the PbR system is based on an out-of-date cost-allocation model and therefore leads to the very problems that are contributing to the MidStaffs crisis – financial pressure causing quality failures and increased risk of mortality.  MidStaffs may be a chance victim of a combination of factors coming together like a perfect storm – but those same factors are present throughout the NHS because they are built into the current design.

One solution is to move towards a more up-to-date financial model called stream costing. This uses the similar data to reference costing but it estimates the “ideal” cost of the “necessary” work to achieve the intended outcome. This stream cost becomes the focus for improvement – the streams where there is the biggest gap between the stream cost and the reference cost are the focus of the redesign activity. Very often the root cause is just poor operational policy design; sometimes it is quality and safety design problems. Both are solvable without investment in extra capacity. The result is a higher quality, quicker, lower-cost stream. Win-win-win. And in the short term that  is rewarded by a tariff income that exceeds cost and a lower HSMR.

Radically redesigning the financial model for healthcare is not a quick fix – and it requires a lot of other changes to happen first. So the sooner we start the sooner we will arrive. 

The Writing On The Wall – Part I

writing_on_the_wallThe writing is on the wall for the NHS.

It is called the Francis Report and there is a lot of it. Just the 290 recommendations runs to 30 pages. It would need a very big wall and very small writing to put it all up there for all to see.

So predictably the speed-readers have latched onto specific words – such as “Inspectors“.

Recommendation 137Inspection should remain the central method for monitoring compliance with fundamental standards.”

And it goes further by recommending “A specialist cadre of hospital inspectors should be established …”

A predictable wail of anguish rose from the ranks “Not more inspectors! The last lot did not do much good!”

The word “cadre” is not one that is used in common parlance so I looked it up:

Cadre: 1. a core group of people at the center of an organization, especially military; 2. a small group of highly trained people, often part of a political movement.

So it has a military, centralist, specialist, political flavour. No wonder there was a wail of anguish! Perhaps this “cadre of inspectors” has been unconsciously labelled with another name? Persecutors.

Of more interest is the “highly trained” phrase. Trained to do what? Trained by whom? Clearly none of the existing schools of NHS management who have allowed the fiasco to happen in the first place. So who – exactly? Are these inspectors intended to be protectors, persecutors, or educators?

And what would they inspect?

And how would they use the output of such an inspection?

Would the fear of the inspection and its possible unpleasant consequences be the stick to motivate compliance?

Is the language of the Francis Report going to create another brick wall of resistance from the rubble of the ruins of the reputation of the NHS?  Many self-appointed experts are already saying that implementing 290 recommendations is impossible.

They are incorrect.

The number of recommendations is a measure of the breadth and depth of the rot. So the critical-to-success factor is to implement them in a well-designed order. Get the first few in place and working and the rest will follow naturally.  Get the order wrong and the radical cure will kill the patient.

So where do we start?

Let us look at the inspection question again.  Why would we fear an external inspection? What are we resisting? There are three facets to this: first we do not know what is expected of us;  second we do not know if we can satisfy the expectation; and third we fear being persecuted for failing to achieve the impossible.

W Edwards Deming used a very effective demonstration of the dangers of well-intended but badly-implemented quality improvement by inspection: it was called the Red Bead Game.  The purpose of the game was to illustrate how to design an inspection system that actually helps to achieve the intended goal. Sustained improvement.

This is applied Improvement Science and I will illustrate how it is done with a real and current example.


I am assisting a department in a large NHS hospital to improve the quality of their service. I have been sent in as an external inspector.  The specific quality metric they have been tasked to improve is the turnaround time of the specialist work that they do. This is a flow metric because a patient cannot leave hospital until this work is complete – and more importantly it is a flow and quality metric because when the hospital is full then another patient, one who urgently needs to be admitted, will be waiting for the bed to be vacated. One in one out.

The department have been set a standard to meet, a target, a specification, a goal. It is very clear and it is easily measurable. They have to turnaround each job of work in less than 2 hours.  This is called a lead time specification and it is arbitrary.  But it is not unreasonable from the perspective of the patient waiting to leave and for the patient waiting to be admitted. Neither want to wait.

The department has a sophisticated IT system that measures their performance. They use it to record when each job starts and when each job is finished and from those two events the software calculates the lead time for each job in real-time. At the end of each day the IT system counts how many jobs were completed in less than 2 hours and compares this with how many were done in total and calculates a ratio which it presents as a percentage in the range of 0 and 100. This is called the process yield.  The department are dedicated and they work hard and they do all the work that arrives each day the same day – no matter how long it takes. And at the end of each day they have their score for that day. And it is almost never 100%.  Not never. Almost never. But it is not good enough and they are being blamed for it. In turn they blame others for making their job more difficult. It is a blame-game and it has been going on for years.

So how does an experienced Improvement Science-trained Inspector approach this sort of “wicked” problem?

First we need to get the writing on the wall – we need to see the reality – we need to “plot the dots” – we need to see what the performance is doing over time – we need to see the voice of the process. And that requires only their data, a pencil, some paper and for the chart to be put on the on the wall where everyone can see it.

Chart_1This is what their daily % yield data for three consecutive weeks looked like as a time-series chart. The thin blue line is the 100% yield target.

The 100% target was only achieved on three days – and they were all Sundays. On the other Sunday it was zero (which may mean that there was no data to calculate a ratio from).

There is wide variation from one day to the next and it is the variation as well as the average that is of interest to an improvement scientist. What is the source of the variation it? If 100% yield can be achieved some days then what is different about those days?

Chart_2

So our Improvement science-trained Inspector will now re-plot the data in a different way – as rational groups. This exposes the issue clearly. The variation on Weekends is very wide and the performance during the Weekdays is much less variable.  What this says is that the weekend system and the weekday system are different. This means that it is invalid to combine the data for both.

It also raises the question of why there is such high variation in yield only at weekends?  The chart cannot answer the question, so our IS-trained Inspector digs a bit deeper and discovers that the volume of work done at the weekend is low, the staffing of the department is different, and that the recording of the events is less reliable. In short – we cannot even trust the weekend data – so we have two reasons to justify excluding it from our chart and just focusing on what happens during the week.

Chart_3We re-plot our chart, marking the excluded weekend data as not for analysis.

We can now see that the weekday performance of our system is visible, less variable, and the average is a long way from 100%.

The team are working hard and still only achieving mediocre performance. That must mean that they need something that is missing. Motivating maybe. More people maybe. More technology maybe.  But there is no more money for more people or technology and traditional JFDI motivation does not seem to have helped.

This looks like an impossible task!

Chart_4

So what does our Inspector do now? Mark their paper with a FAIL and put them on the To Be Sacked for Failing to Meet an Externally Imposed Standard heap?

Nope.

Our IS-trained Inspector calculates the limits of expected performance from the data  and plots these limits on the chart – the red lines.  The computation is not difficult – it can be done with a calculator and the appropriate formula. It does not need a sophisticated IT system.

What this chart now says is “The current design of this process is capable of delivering between 40% and 85% yield. To expect it do do better is unrealistic”.  The implication for action is “If we want 100% yield then the process needs to be re-designed.” Persecution will not work. Blame will not work. Hoping-for-the-best will not work. The process must be redesigned.

Our improvement scientist then takes off the Inspector’s hat and dons the Designer’s overalls and gets to work. There is a method to this and it is called 6M Design®.

Chart_5

First we need to have a way of knowing if any future design changes have a statistically significant impact – for better or for worse. To do this the chart is extended into the future and the red lines are projected forwards in time as the black lines called locked-limits.  The new data is compared with this projected baseline as it comes in.  The weekends and bank holidays are excluded because we know that they are a different system. On one day (20/12/2012) the yield was surprisingly high. Not 100% but more than the expected upper limit of 85%.

Chart_6The alerts us to investigate and we found that it was a ‘hospital bed crisis’ and an ‘all hands to the pumps’ distress call went out.

Extra capacity was pulled to the process and less urgent work was delayed until later.  It is the habitual reaction-to-a-crisis behaviour called “expediting” or “firefighting”.  So after the crisis had waned and the excitement diminished the performance returned to the expected range. A week later the chart signals us again and we investigate but this time the cause was different. It was an unusually quiet day and there was more than enough hands on the pumps.

Both of these days are atypically good and we have an explanation for each of them. This is called an assignable cause. So we are justified in excluding these points from our measure of the typical baseline capability of our process – the performance the current design can be expected to deliver.

An inexperienced manager might conclude from these lessons that what is needed is more capacity. That sounds and feels intuitively obvious and it is correct that adding more capacity may improve the yield – but that does not prove that lack of capacity is the primary cause.  There are many other causes of long lead times  just as there are many causes of headaches other than brain tumours! So before we can decide the best treatment for our under-performing design we need to establish the design diagnosis. And that is done by inspecting the process in detail. And we need to know what we are looking for; the errors of design commission and the errors of design omission. The design flaws.

Only a trained and experienced process designer can spot the flaws in a process design. Intuition will trick the untrained and inexperienced.


Once the design diagnosis is established then the redesign stage can commence. Design always works to a specification and in this case it was clear – to significantly improve the yield to over 90% at no cost.  In other words without needing more people, more skills, more equipment, more space, more anything. The design assignment was made trickier by the fact that the department claimed that it was impossible to achieve significant improvement without adding extra capacity. That is why the Inspector had been sent in. To evaluate that claim.

The design inspection revealed a complex adaptive system – not a linear, deterministic, production-line that manufactures widgets.  The department had to cope with wide variation in demand, wide variation in quality of request, wide variation in job complexity, and wide variation in urgency – all at the same time.  But that is the nature of healthcare and acute hospital work. That is the expected context.

The analysis of the current design revealed that it was not well suited for this requirement – and the low yield was entirely predictable. The analysis also revealed that the root cause of the low yield was not lack of either flow-capacity or space-capacity.

This insight led to the suggestion that it would be possible to improve yield without increasing cost. The department were polite but they did not believe it was possible. They had never seen it, so why should they be expected to just accept this on faith?

Chart_7So, the next step was to develop, test and demonstrate a new design and that was done in three stages. The final stage was the Reality Test – the actual process design was changed for just one day – and the yield measured and compared with the predicted improvement.

This was the validity test – the proof of the design pudding. And to visualise the impact we used the same technique as before – extending the baseline of our time-series chart, locking the limits, and comparing the “after” with the “before”.

The yellow point marks the day of the design test. The measured yield was well above the upper limit which suggested that the design change had made a significant improvement. A statistically significant improvement.  There was no more capacity than usual and the day was not unusually quiet. At the end of the day we held a team huddle.

Our first question was “How did the new design feel?” The consensus was “Calmer, smoother, fewer interruptions” and best of all “We finished on time – there was no frantic catch up at the end of the day and no one had to stay late to complete the days work!”

The next question was “Do we want to continue tomorrow with this new design or revert back to the old one?” The answer was clear “Keep going with the new design. It feels better.”

The same chart was used to show what happened over the next few days – excluding the weekends as before. The improvement was sustained – it did not revert to the original because the process design had been changed. Same work, same capacity, different process – higher yield. The red flags on the charts mark the statistically significant evidence of change and the cluster of red flags is very strong statistical evidence that the improvement is not due to chance.

The next phase of the 6M Design® method is to continue to monitor the new process to establish the new baseline of expectation. That will require at least twelve data points and it is in progress. But we have enough evidence of a significant improvement. This means that we have no credible justification to return to the old design, and it also implies that it is no longer valid to compare the new data against the old projected limits. Our chart tells us that we need to split the data into before-and-after and to calculate new averages and limits for each segment separately. We have changed the voice of the process by changing the design.

Chart_8And when we split the data at the point-of-change then the red flags disappear – which means that our new design is stable. And it has a new capability – a better one. We have moved closer to our goal of 100% yield. It is still early days and we do not really have enough data to calculate the new capability.

What we can say is that we have improved average quality yield from 63% to about 90% at no cost using a sequence of process diagnose, design, deliver.  Study-Plan-Do.

And we have hard evidence that disproves the impossibility hypothesis.


And that was the goal of the first design change – it was not to achieve 100% yield in one jump. Our design simulation had predicted an improvement to about 90%.  And there are other design changes to follow that need this stable foundation to build on.  The order of implementation is critical – and each change needs time to bed in before the next change is made. That is the nature of the challenge of improving a complex adaptive system.

The cost to the department was zero but the benefit was huge.  The bigger benefit to the organisation was felt elsewhere – the ‘customers’ saw a higher quality, quicker process – and there will be a financial benefit for the whole system. It will be difficult to measure with our current financial monitoring systems but it will be real and it will be there – lurking in the data.

The improvement required a trained and experienced Inspector/Designer/Educator to start the wheel of change turning. There are not many of these in the NHS – but the good news is that the first level of this training is now available.

What this means for the post-Francis Report II NHS is that those who want to can choose to leap over the wall of resistance that is being erected by the massing legions of noisy cynics. It means we can all become our own inspectors. It means we can all become our own improvers. It means we can all learn to redesign our systems so that they deliver higher safety, better quality, more quickly and at no extra one-off or recurring cost.  We all can have nothing to fear from the Specialist Cadre of Hospital Inspectors.

The writing is on the wall.


15/02/2013 – Two weeks in and still going strong. The yield has improved from 63% to 92% and is stable. Improvement-by-design works.

10/03/2013 – Six weeks in and a good time to test if the improvement has been sustained.

TTO_Yield_WeeklyThe chart is the weekly performance plotted for 17 weeks before the change and for 5 weeks after. The advantage of weekly aggregated data is that it removes the weekend/weekday 7-day cycle and reduces the effect of day-to-day variation.

The improvement is obvious, significant and has been sustained. This is the objective improvement. More important is the subjective improvement.

Here is what Chris M (departmental operational manager) wrote in an email this week (quoted with permission):

Hi Simon

It is I who need to thank you for explaining to me how to turn our pharmacy performance around and ultimately improve the day to day work for the pharmacy team (and the trust staff). This will increase job satisfaction and make pharmacy a worthwhile career again instead of working in constant pressure with a lack of achievement that had made the team feel rather disheartened and depressed. I feel we can now move onwards and upwards so thanks for the confidence boost.

Best wishes and many thanks

Chris

This is what Improvement Science is all about!

Robert Francis QC

press_on_screen_anim_150_wht_7028Today is an important day.

The Robert Francis QC Report and recommendations from the Mid-Staffordshire Hospital Crisis has been published – and it is a sobering read.  The emotions that just the executive summary evoked in me were sadness, shame and anger.  Sadness for the patients, relatives, and staff who have been irreversibly damaged; shame that the clinical professionals turned a blind-eye; and anger that the root cause has still not been exposed to public scrutiny.

Click here to get a copy of the RFQC Report Executive Summary.

Click here to see the video of RFQC describing his findings. 

The root cause is ignorance at all levels of the NHS.  Not stupidity. Not malevolence. Just ignorance.

Ignorance of what is possible and ignorance of how to achieve it.

RFQC rightly focusses his recommendations on putting patients at the centre of healthcare and on making those paid to deliver care accountable for the outcomes.  Disappointingly, the report is notably thin on the financial dimension other than saying that financial targets took priority over safety and quality.  He is correct. They did. But the report does not say that this is unnecessary – it just says “in future put safety before finance” and in so doing he does not challenge the belief that we are playing a zero-sum-game. The  assumotion that higher-quality-always-costs-more.

This assumption is wrong and can easily be disproved.

A system that has been designed to deliver safety-and-quality-on-time-first-time-and-every-time costs less. And it costs less because the cost of errors, checking, rework, queues, investigation, compensation, inspectors, correctors, fixers, chasers, and all the other expensive-high-level-hot-air-generation-machinery that overburdens the NHS and that RFQC has pointed squarely at is unnecessary.  He says “simplify” which is a step in the right direction. The goal is to render it irrelevent.

The ignorance is ignorance of how to design a healthcare system that works right-first-time. The fact that the Francis Report even exists and is pointing its uncomfortable fingers-of-evidence at every level of the NHS from ward to government is tangible proof of this collective ignorance of system design.

And the good news is that this collective ignorance is also unnecessary … because the knowledge of how to design safe-and-affordable systems already exists. We just have to learn how. I call it 6M Design® – but  the label is irrelevent – the knowledge exists and the evidence that it works exists.

So here are some of the RFQC recommendations viewed though a 6M Design® lens:       

1.131 Compliance with the fundamental standards should be policed by reference to developing the CQC’s outcomes into a specification of indicators and metrics by which it intends to monitor compliance. These indicators should, where possible, be produced by the National Institute for Health and Clinical Excellence (NICE) in the form of evidence-based procedures and practice which provide a practical means of compliance and of measuring compliance with fundamental standards.

This is the safety-and-quality outcome specification for a healthcare system design – the required outcome presented as a relevent metric in time-series format and qualified by context.  Only a stable outcome can be compared with a reference standard to assess the system capability. An unstable outcome metric requires inquiry to understand the root cause and an appropriate action to restore stability. A stable but incapable outcome performance requires redesign to achieve both stability and capability. And if  the terms used above are unfamiliar then that is further evidence of system-design-ignorance.   
 
1.132 The procedures and metrics produced by NICE should include evidence-based tools for establishing the staffing needs of each service. These measures need to be readily understood and accepted by the public and healthcare professionals.

This is the capacity-and-cost specification of any healthcare system design – the financial envelope within which the system must operate. The system capacity design works backwards from this constraint in the manner of “We have this much resource – what design of our system is capable of delivering the required safety and quality outcome with this capacity?”  The essence of this challenge is to identify the components of poor (i.e. wasteful) design in the existing systems and remove or replace them with less wasteful designs that achieve the same or better quality outcomes. This is not impossible but it does require system diagnostic and design capability. If the NHS had enough of those skills then the Francis Report would not exist.

1.133 Adoption of these practices, or at least their equivalent, is likely to help ensure patients’ safety. Where NICE is unable to produce relevant procedures, metrics or guidance, assistance could be sought and commissioned from the Royal Colleges or other third-party organisations, as felt appropriate by the CQC, in establishing these procedures and practices to assist compliance with the fundamental standards.

How to implement evidence-based research in the messy real world is the Elephant in the Room. It is possible but it requires techniques and tools that fall outside the traditional research and audit framework – or rather that sit between research and audit. This is where Improvement Science sits. The fact that the Report only mentions evidence-based practice and audit implies that the NHS is still ignorant of this gap and what fills it – and so it appears is RFQC.   

1.136 Information needs to be used effectively by regulators and other stakeholders in the system wherever possible by use of shared databases. Regulators should ensure that they use the valuable information contained in complaints and many other sources. The CQC’s quality risk profile is a valuable tool, but it is not a substitute for active regulatory oversight by inspectors, and is not intended to be.

Databases store data. Sharing databases will share data. Data is not information. Information requires data and the context for that data.  Furthermore having been informed does not imply either knowledge or understanding. So in addition to sharing information, the capability to convert information-into-decision is also required. And the decisions we want are called “wise decisions” which are those that result in actions and inactions that lead inevitably to the intended outcome.  The knowledge of how to do this exists but the NHS seems ignorant of it. So the challenge is one of education not of yet more investigation.

1.137 Inspection should remain the central method for monitoring compliance with fundamental standards. A specialist cadre of hospital inspectors should be established, and consideration needs to be given to collaborative inspections with other agencies and a greater exploitation of peer review techniques.

This is audit. This is the sixth stage of a 6M Design® – the Maintain step.  Inspectors need to know what they are looking for, the errors of commission and the errors of omission;  and to know what those errors imply and what to do to identify and correct the root cause of these errors when discovered. The first cadre of inspectors will need to be fully trained in healthcare systems design and healthcare systems improvement – in short – they need to be Healthcare Improvementologists. And they too will need to be subject to the same framework of accreditation, and accountability as those who work in the system they are inspecting.  This will be one of the greatest of the challenges. The fact that the Francis report exists implies that we do not have such a cadre. Who will train, accredit and inspect the inspectors? Who has proven themselves competent in reality (not rhetorically)?

1.163 Responsibility for driving improvement in the quality of service should therefore rest with the commissioners through their commissioning arrangements. Commissioners should promote improvement by requiring compliance with enhanced standards that demand more of the provider than the fundamental standards.

This means that commissioners will need to understand what improvement requires and to include that expectation in their commissioning contracts. This challenge is even geater that the creation of a “cadre of inspectors”. What is required is a “generation of competent commissioners” who are also experienced and who have demonstrated competence in healthcare system design. The Commissioners-of-the-Future will need to be experienced healthcare improvementologists.

The NHS is sick – very sick. The medicine it needs to restore its health and vitality does exist – and it will not taste very nice – but to withold an effective treatment for an serious illness on that basis is clinical negligence.

It is time for the NHS to look in the mirror and take the strong medicine. The effect is quick – it will start to feel better almost immediately. 

To deliver safety and quality and quickly and affordably is possible – and if you do not believe that then you will need to muster the humility to ask to have the how demonstrated.

6MDesign

 

Kicking the Habit

no_smoking_400_wht_6805It is not easy to kick a habit. We all know that. And for some reason the ‘bad’ habits are harder to kick than the ‘good’ ones. So what is bad about a ‘bad habit’ and why is it harder to give up? Surely if it was really bad it would be easier to give up?

Improvement is all about giving up old ‘bad’ habits and replacing them with new ‘good’ habits – ones that will sustain the improvement. But there is an invisible barrier that resists us changing any habit – good or bad. And it is that barrier to habit-breaking that we need to understand to succeed. Luck is not a reliable ally.

What does that habit-breaking barrier look like?

The problem is that it is invisible – or rather it is emotional – or to be precise it is chemical.

Our emotions are the output of a fantastically complex chemical system – our brains. And influencing the chemical balance of our brains can have a profound effect on our emotions.  That is how anti-depressants work – they very slightly adjust the chemical balance of every part of our brains. The cumulative effect is that we feel happier.  Nicotine has a similar effect.

And we can achieve the same effect without resorting to drugs or fags – and we can do that by consciously practising some new mental habits until they become ingrained and unconscious. We literally overwrite the old mental habit.

So how do we do this?

First we need to make the mental barrier visible – and then we can focus our attention on eroding it. To do that we need to remove the psychological filter that we all use to exclude our emotions. It is rather like taking off our psychological sunglasses.

When we do that the invisible barrier jumps into view: illuminated by the glare of three negative emotions.  Sadness, fear, and anxiety.  So whenever we feel any of these we know there is a barrier to improvement hiding  the emotional smoke. This is the first stage: tune in to our emotions.

The next step is counter-intuitive. Instead of running away from the negative feeling we consciously flip into a different way of thinking.  We actively engage with our negative feelings – and in a very specific way. We engage in a detached, unemotional, logical, rational, analytical  ‘What caused that negative feeling?’ way.

We then focus on the causes of the negative emotions. And when we have the root causes of our Niggles we design around them, under them, and over them.  We literally design them out of our heads.

The effect is like magic.

And this week I witnessed a real example of this principle in action.

figure_pressing_power_button_150_wht_10080One team I am working with experienced the Power of Improvementology. They saw the effect with their own eyes.  There were no computers in the way, no delays, no distortion and no deletion of data to cloud the issue. They saw the performance of their process jump dramatically – from a success rate of 60% to 96%!  And not just the first day, the second day too.  “Surprised and delighted” sums up their reaction.

So how did we achieve this miracle?

We just looked at the process through a different lens – one not clouded and misshapen by old assumptions and blackened by ignorance of what is possible.  We used the 6M Design® lens – and with the clarity of insight it brings the barriers to improvement became obvious. And they were dissolved. In seconds.

Success then flowed as the Dam of Disbelief crumbled and was washed away.

figure_check_mark_celebrate_anim_150_wht_3617The chaos has gone. The interruptions have gone. The expediting has gone. The firefighting has gone. The complaining has gone.  These chronic Niggles have have been replaced by the Nuggets of calm efficiency, new hope and visible excitement.

And we know that others have noticed the knock-on effect because we got an email from our senior executive that said simply “No one has moaned about TTOs for two days … something has changed.”    

That is Improvementology-in-Action.

 

Curing Chronic Carveoutosis

pin_marker_lighting_up_150_wht_6683Last week the Ray Of Hope briefly illuminated a very common system design disease called carveoutosis.  This week the RoH will tarry a little longer to illuminate an example that reveals the value of diagnosing and treating this endemic process ailment.

Do you remember the days when we used to have to visit the Central Post Office in our lunch hour to access a quality-of-life-critical service that only a Central Post Office could provide – like getting a new road tax disc for our car?  On walking through the impressive Victorian entrances of these stalwart high street institutions our primary challenge was to decide which queue to join.

In front of each gleaming mahogony, brass and glass counter was a queue of waiting customers. Behind was the Post Office operative. We knew from experience that to be in-and-out before our lunch hour expired required deep understanding of the ways of people and processes – and a savvy selection.  Some queues were longer than others. Was that because there was a particularly slow operative behind that counter? Or was it because there was a particularly complex postal problem being processed? Or was it because the customers who had been waiting longer had identified that queue was fast flowing and had defected to it from their more torpid streams? We know that size is not a reliable indicator of speed or quality.figure_juggling_time_150_wht_4437

The social pressure is now mounting … we must choose … dithering is a sign of weakness … and swapping queues later is another abhorrent behaviour. So we employ our most trusted heuristic – we join the end of the shortest queue. Sometimes it is a good choice, sometimes not so good!  But intuitively it feels like the best option.

Of course  if we choose wisely and we succeed in leap-frogging our fellow customers then we can swagger (just a bit) on the way out. And if not we can scowl and mutter oaths at others who (by sheer luck) leap frog us. The Post Office Game is fertile soil for the Aint’ It Awful game which we play when we arrive back at work.

single_file_line_PA_150_wht_3113But those days are past and now we are more likely to encounter a single-queue when we are forced by necessity to embark on a midday shopping sortie. As we enter we see the path of the snake thoughtfully marked out with rope barriers or with shelves hopefully stacked with just-what-we-need bargains to stock up on as we drift past.  We are processed FIFO (first-in-first-out) which is fairer-for-all and avoids the challenge of the dreaded choice-of-queue. But the single-queue snake brings a new challenge: when we reach the head of the snake we must identify which operative has become available first – and quickly!

Because if we falter then we will incur the shame of the finger-wagging or the flashing red neon arrow that is easily visible to the whole snake; and a painful jab in the ribs from the impatient snaker behind us; and a chorus of tuts from the tail of the snake. So as we frantically scan left and right along the line of bullet-proof glass cells looking for clues of imminent availability we run the risk of developing acute vertigo or a painful repetitive-strain neck injury!

stick_figure_sitting_confused_150_wht_2587So is the single-queue design better?  Do we actually wait less time, the same time or more time? Do we pay a fair price for fair-for-all queue design? The answer is not intuitively obvious because when we are forced to join a lone and long queue it goes against our gut instinct. We feel the urge to push.

The short answer is “Yes”.  A single-queue feeding tasks to parallel-servers is actually a better design. And if we ask the Queue Theorists then they will dazzle us with complex equations that prove it is a better design – in theory.  But the scary-maths does not help us to understand how it is a better design. Most of us are not able to convert equations into experience; academic rhetoric into pragmatic reality. We need to see it with our own eyes to know it and understand it. Because we know that reality is messier than theory.    

And if it is a better design then just how much better is it?

To illustrate the potential advantage of a single-queue design we need to push the competing candiates to their performance limits and then measure the difference. We need a real example and some real data. We are Improvementologists! 

First we need to map our Post Office process – and that reveals that we have a single step process – just the counter. That is about as simple as a process gets. Our map also shows that we have a row of counters of which five are manned by fully trained Post Office service operatives.

stick_figure_run_clock_150_wht_7094Now we can measure our process and when we do that we find that we get an average of 30 customers per hour walking in the entrance and and average of 30 cusomers an hour walking out. Flow-out equals flow-in. Activity equals demand. And the average flow is one every 2 minutes. So far so good. We then observe our five operatives and we find that the average time from starting to serve one customer to starting to serve the next is 10 minutes. We know from our IS training that this is the cycle time. Good.

So we do a quick napkin calculation to check and that the numbers make sense: our system of five operatives working in parallel, each with an average cycle time of 10 minutes can collectively process a customer on average every 2 minutes – that is 30 per hour on average. So it appears we have just enough capacity to keep up with the flow of work  – we are at the limit of efficiency.  Good.

CarveOut_00We also notice that there is variation in the cycle time from customer to customer – so we plot our individual measurements asa time-series chart. There does not seem to be an obvious pattern – it looks random – and BaseLine says that it is statistically stable. Our chart tells us that a range of 5 to 15 minutes is a reasonable expectation to set.

We also observe that there is always a queue of waiting customers somewhere – and although the queues fluctuate in size and location they are always there.

 So there is always a wait for some customers. A variable wait; an unpredictable wait. And that is a concern for us because when the queues are too numerous and too long then we see customers get agitated, look at their watches, shrug their shoulders and leave – taking their custom and our income with them and no doubt telling all their friends of their poor experience. Long queues and long waits are bad for business.

And we do not want zero queues either because if there is no queue and our operatives run out of work then they become under-utilised and our system efficiency and productivity falls.  That means we are incurring a cost but not generating an income. No queues and idle resources are bad for business too.

And we do not want a mixture of quick queues and slow queues because that causes complaints and conflict.  A high-conflict customer complaint experience is bad for business too! 

What we want is a design that creates small and stable queues; ones that are just big enough to keep our operatives busy and our customers not waiting too long.

So which is the better design and how much better is it? Five-queues or a single-queue? Carve-out or no-carve-out?

To find the answer we decide to conduct a week-long series of experiments on our system and use real data to reveal the answer. We choose the time from a customer arriving to the same customer leaving as our measure of quality and performance – and we know that the best we can expect is somewhere between 5 and 15 minutes.  We know from our IS training that is called the Lead Time.

time_moving_fast_150_wht_10108On day #1 we arrange our Post Office with five queues – clearly roped out – one for each manned counter.  We know from our mapping and measuring that customers do not arrive in a steady stream and we fear that may confound our experiment so we arrange to admit only one of our loyal and willing customers every 2 minutes. We also advise our loyal and willing customers which queue they must join before they enter to avoid the customer choice challenges.  We decide which queue using a random number generator – we toss a dice until we get a number between 1 and 5.  We record the time the customer enters on a slip of paper and we ask the customer to give it to the operative and we instruct our service operatives to record the time they completed their work on the same slip and keep it for us to analyse later. We run the experiment for only 1 hour so that we have a sample of 30 slips and then we collect the slips,  calculate the difference between the arrival and departure times and plot them on a time-series chart in the order of arrival.

CarveOut_01This is what we found.  Given that the time at the counter is an average of 10 minutes then some of these lead times seem quite long. Some customers spend more time waiting than being served. And we sense that the performance is getting worse over time.

So for the next experiment we decide to open a sixth counter and to rope off a sixth queue. We expect that increasing capacity will reduce waiting time and we confidently expect the performance to improve.

On day #2 we run our experiment again, letting customers in one every 2 minutes as before and this time we use all the numbers on the dice to decide which queue to direct each customer to.  At the end of the hour we collect the slips, calculate the lead times and plot the data – on the same chart.

CarveOut_02This is what we see.

It does not look much better and that is big surprise!

The wide variation from customer to customer looks about the same but with the Eye of Optimism we get a sense that the overall performance looks a bit more stable.

So we conclude that adding capacity (and cost) may make a small difference.

But then we remember that we still only served 30 customers – which means that our income stayed the same while our cost increased by 20%. That is definitely NOT good for business: it is not goiug to look good in a business case “possible marginally better quality and 20% increase in cost and therefore price!”

So on day #3 we change the layout. This time we go back to five counters but we re-arrange the ropes to create a single-queue so the customer at the front can be ‘pulled’ to the first available counter. Everything else stays the same – one customer arriving every 2 minutes, the dice, the slips of paper, everything.  At the end of the hour we collect the slips, do our sums and plot our chart.

CarveOut_03And this is what we get! The improvement is dramatic. Both the average and the variation has fallen – especially the variation. But surely this cannot be right. The improvement is too good to be true. We check our data again. Yes, our customers arrived and departed on average one every 2 minutes as before; and all our operatives did the work in an average of 10 minutes just as before. And we had the exactly the same capacity as we had on day #1. And we finished on time. It is correct. We are gobsmaked. It is like a magic wand has been waved over our process. We never would have predicted  that just moving the ropes around to could have such a big impact.  The Queue Theorists were correct after all!

But wait a minute! We are delivering a much better customer experience in terms of waiting time and at the same cost. So could we do even better with six counters open? What will happen if we keep the single-queue design and open the sixth desk?  Before it made little difference but now we doubt our ability to guess what will happen. Our intuition seems to keep tricking us. We are losing our confidence in predicting what the impact will be. We are in counter-intuitive land! We need to run the experiment for real.

So on day #4 we keep the single-queue and we open six desks. We await the data eagerly.

CarveOut_04And this is what happened. Increasing the capacity by 20% has made virtually no difference – again. So we now have two pieces of evidence that say – adding extra capacity did not make a difference to waiting times. The variation looks a bit less though but it is marginal.

It was changing the Queue Design that made the difference! And that change cost nothing. Rien. Nada. Zippo!

That will look much better in our report but now we have to face the emotional discomfort of having to re-evaluate one of our deepest held assumptions.

Reality is telling us that we are delivering a better quality experience using exactly the same resources and it cost nothing to achieve. Higher quality did NOT cost more. In fact we can see that with a carve-out design when we added capacity we just increased the cost we did NOT improve quality. Wow!  That is a shock. Everything we have been led to believe seems to be flawed.

Our senior managers are not going to like this message at all! We will be challening their dogma directly. And they do not like that. Oh dear! 

Now we can see how much better a no-carveout single-queue pull-design can work; and now we can explain why single-queue designs  are used; and now we can show others our experiment and our data and if they do not believe us they can repeat the experiment themselves.  And we can see that it does not need a real Post Office – a pad of Post It® Notes, a few stopwatches and some willing helpers is all we need.

And even though we have seen it with our own eyes we still struggle to explain how the single-queue design works better. What actually happens? And we still have that niggling feeling that the performance on day #1 was unstable.  We need to do some more exploring.

So we run the day#1 experiment again – the five queues – but this time we run it for a whole day, not just an hour.

CarveOut_06

Ah ha!   Our hunch was right.  It is an unstable design. Over time the variation gets bigger and bigger.

But how can that happen?

Then we remember. We told the customers that they could not choose the shortest queue or change queue after they had joined it.  In effect we said “do not look at the other queues“.

And that happens all the time on our systems when we jealously hide performance data from each other! If we are seen to have a smaller queue we get given extra work by the management or told to slow down by the union rep!  

So what do we do now?  All we are doing is trying to improve the service and all we seem to be achieving is annoying more and more people.

What if we apply a maximum waiting time target, say of 1 hour, and allow customers to jump to the front of their queue if they are at risk if breaching the target? That will smooth out spikes and give everyone a fair chance. Customers will understand. It is intuitively obvious and common sense. But our intuition has tricked us before … 

So we run the experiment again and this time we tell our customers that if they wait 50 minutes then they can jump to the front of their queue. They appreciate this because they now have a upper limit on the time they will wait.  

CarveOut_07And this is what we observe. It looks better than before, at least initially, and then it goes pear-shaped.

All we have done with our ‘carve-out and-expedite-the-long-waiters’ design is to defer the inevitable – the crunch. We cannot keep our promise. By the end everyone is pushing to the frontof the queue. It is a riot!  

And there is more. Look at the lead time for the last few customers – two hours. Not only have they waited a long time, but we have had to stay open for two hours longer. That is a BIG cost pessure in overtime payments.

So, whatever way we look at it: a single-queue design is better.  And no one loses out! The customers have a short and predictable waiting time; the operatives are kept occupied and go home on time; and the executives bask in the reflected glory of the excellent customer feedback.  It is a Three Wins® design.

Seeing is believing – and we now know that it is worth diagnosing and treating carveoutosis.

And the only thing left to do is to explain is how a single-queue design works better. It is not obvious is it? 

puzzle_lightbulb_build_PA_150_wht_4587And the best way to do that is to play the Post Office Game and see what actually happens. 

A big light-bulb moment awaits!

 

 

Update: My little Sylvanian friends have tried the Post Office Game and kindly sent me this video of the before  Sylvanian Post Office Before and the after Sylvanian Post Office After. They say they now know how the single-queue design works better. 

 

A Ray Of Hope

stick_figure_shovel_snow_anim_150_wht_9579It does not seem to take much to bring a real system to an almost standstill.  Six inches of snow falling between 10 AM and 2 PM in a Friday in January seems to be enough!

It was not so much the amount of snow – it was the timing.  The decision to close many schools was not made until after the pupils had arrived – and it created a logistical nightmare for parents. 

Many people suddenly needed to get home before they expected which created an early rush hour and gridlocked the road system.

The same number of people travelled the same distance in the same way as they would normally – it just took them a lot longer.  And the queues created more problems as people tried to find work-arounds to bypass the traffic jams.

How many thousands of hours of life-time was wasted sitting in near-stationary queues of cars? How many millions of poundsworth of productivity was lost? How much will the catchup cost? 

And yet while we grumble we shrug our shoulders and say “It is just one of those things. We cannot control the weather. We just have to grin and bear it.”  

Actually we do not have to. And we do not need a weather machine to control the weather. Mother Nature is what it is.

Exactly the same behaviour happens in many systems – and our conclusion is the same.  We assume the chaos and queues are inevitable.

They are not.

They are symptoms of the system design – and specifically they are the inevitable outcomes of the time-design.

But it is tricky to visualise the time-design of a system.  We can see the manifestations of the poor time-design, the queues and chaos, but we do not so easily perceive the causes. So the poor time-design persists. We are not completely useless though; there are lots of obvious things we can do. We can devise ingenious ways to manage the queues; we can build warehouses to hold the queues; we can track the jobs in the queues using sophisticated and expensive information technology; we can identify the hot spots; we can recruit and deploy expediters, problem-solvers and fire-fighters to facilitate the flow through the hottest of them; and we can pump capacity and money into defences, drains and dramatics. And our efforts seem to work so we congratulate ourselves and conclude that these actions are the only ones that work.  And we keep clamouring for more and more resources. More capacity, MORE capacity, MORE CAPACITY.

Until we run out of money!

And then we have to stop asking for more. And then we start rationing. And then we start cost-cutting. And then the chaos and queues get worse. 

And all the time we are not aware that our initial assumptions were wrong.

The chaos and queues are not inevitable. They are a sign of the time-design of our system. So we do have other options.  We can improve the time-design of our system. We do not need to change the safety-design; nor the quality-design; nor the money-design.  Just improving the time-design will be enough. For now.

So the $64,000,000 question is “How?”

Before we explore that we need to demonstrate What is possible. How big is the prize?

The class of system design problem that cause particular angst are called mixed-priority mixed-complexity crossed-stream designs.  We encounter dozens of them in our daily life and we are not aware of it.  One of particular interest to many is called a hospital. The mixed-priority dimension is the need to manage some patients as emergencies, some as urgent and some as routine. The mixed-complexity dimension is that some patients are easy and some are complex. The crossed-stream dimension is the aggregation of specialised resources into departments. Expensive equipment and specific expertise.  We then attempt to push patients with different priorites long different paths through these different departments . And it is a management nightmare! 

BlueprintOur usual and “obvious” response to this challenge is called a carve-out design. And that means we chop up our available resource capacity into chunks.  And we do that in two ways: chunks of time and chunks of space.  We try to simplify the problem by dissecting it into bits that we can understand. We separate the emergency departments from the  planned-care facilities. We separate outpatients from inpatients. We separate medicine from surgery – and we then intellectually dissect our patients into organ systems: brains, lungs, hearts, guts, bones, skin, and so on – and we create separate departments for each one. Neurology, Respiratory, Cardiology, Gastroenterology, Orthopaedics, Dermatology to list just a few. And then we become locked into the carve-out design silos like prisoners in cages of our own making.

And so it is within the departments that are sub-systems of the bigger system. Simplification, dissection and separation. Ad absurdam.

The major drawback with our carve-up design strategy is that it actually makes the system more complicated.  The number of necessary links between the separate parts grows exponentially.  And each link can hold a small queue of waiting tasks – just as each side road can hold a queue of waiting cars. The collective complexity is incomprehensible. The cumulative queue is enormous. The opportunity for confusion and error grows exponentially. Safety and quality fall and cost rises. Carve-out is an inferior time-design.

But our goal is correct: we do need to simplify the system so that means simplifying the time-design.

To illustrate the potential of this ‘simplify the time-design’ approach we need a real example.

One way to do this is to create a real system with lots of carve-out time-design built into it and then we can observe how it behaves – in reality. A carefully designed Table Top Game is one way to do this – one where the players have defined Roles and by following the Rules they collectively create a real system that we can map, measure and modify. With our Table Top Team trained and ready to go we then pump realistic tasks into our realistic system and measure how long they take in reality to appear out of the other side. And we then use the real data to plot some real time-series charts. Not theoretical general ones – real specific ones. And then we use the actual charts to diagnose the actual causes of the actual queues and actual chaos.

TimeDesign_BeforeThis is the time-series chart of a real Time-Design Game that has been designed using an actual hospital department and real observation data.  Which department it was is not of importance because it could have been one of many. Carve-out is everywhere.

During one run of the Game the Team processed 186 tasks and the chart shows how long each task took from arriving to leaving (the game was designed to do the work in seconds when in the real department it took minutes – and this was done so that one working day could be condensed from 8 hours into 8 minutes!)

There was a mix of priority: some tasks were more urgent than others. There was a mix of complexity: some tasks required more steps that others. The paths crossed at separate steps where different people did defined work using different skills and special equipment.  There were handoffs between all of the steps on all of the streams. There were  lots of links. There were many queues. There were ample opportunities for confusion and errors.

But the design of the real process was such that the work was delivered to a high quality – there were very few output errors. The yield was very high. The design was effective. The resources required to achieve this quality were represented by the hours of people-time availability – the capacity. The cost. And the work was stressful, chaotic, pressured, and important – so it got done. Everyone was busy. Everyone pulled together. They helped each other out. They were not idle. They were a good team. The design was efficient.

The thin blue line on the time-series chart is the “time target” set by the Organisation.  But the effective and efficient system design only achieved it 77% of the time.  So the “obvious” solution was to clamour for more people and for more space and for more equipment so that the work can be done more quickly to deliver more jobs on-time.  Unfortunately the Rules of the Time-Design Game do not allow this more-money option. There is no more money.

To succeed at the Time-Design Game the team must find a way to improve their delivery time performance with the capacity they have and also to deliver the same quality.  But this is impossible! If it were possible then the solution would be obvious and they would be doing it already. No one can succeed on the Time-Design Game. 

Wrong. It is possible.  And the assumption that the solution is obvious is incorrect. The solution is not obvious – at least to the untrained eye.

To the trained eye the time-series chart shows the characteristic signals of a carve-out time-design. The high task-to-task variation is highly suggestive as is the pattern of some of the earlier arrivals having a longer lead time. An experienced system designer can diagnose a carve-out time-design from a set of time-series charts of a process just as a doctor can diagnose the disease from the vital signs chart for a patient.  And when the diagnosis is confirmed with a verification test then the time-Redesign phase can start. 

TimeDesign_AfterPhase1This chart shows what happened after the time-design of the system was changed – after some of the carve-out design was modified. The Y-axis scale is the same as before – and the delivery time improvement is dramatic. The Time-ReDesigned system is now delivering 98% achievement of the “on time target”.

The important thing to be aware of is that exactly the same work was done, using exactly the same steps, and exactly the same resources. No one had to be retrained, released or recruited.  The quality was not impaired. And the cost was actually less because less overtime was needed to mop up the spillover of work at the end of the day.

And the Time-ReDesigned system feels better to work in. It is not chaotic; flow is much smoother; and it is busy yet relaxed and even fun.  The same activity is achieved by the same people doing the same work in the same sequence. Only the Time-Design has changed. A change that delivered a win for the workers!

What was the impact of this cost-saving improvement on the customers of this service? They can now be 98% confident that they will get their task completed correctly in less than 120 minutes.  Before the Time-Redesign the 98% confidence limit was 470 minutes! So this is a win for the customers too!

And the Time-ReDesigned system is less expensive so it is a win for whoever is paying.

Same safety and quality, quicker with less variation, and at lower cost. Win-Win-Win.

And the usual reaction to playing the Time-ReDesign Game is incredulous disbelief.  Some describe it as a “light bulb” moment when they see how the diagnosis of the carve-out time-design is made and and how the Time-ReDesign is done. They say “If I had not seen it with my own eyes I would not have believed it.” And they say “The solutions are simple but not obvious!” And they say “I wish I had learned this years ago!”  And thay apologise for being so skeptical before.

And there are those who are too complacent, too careful or too cynical to play the Time-ReDesign Game (which is about 80% of people actually) – and who deny themselves the opportunity of a win-win-win outcome. And that is their choice. They can continue to grin and bear it – for a while longer.     

And for the 20% who want to learn how to do Time ReDesign for real in their actual systems there is now a Ray Of Hope.

And the Ray of Hope is illuminating a signpost on which is written “This Way to Improvementology“. 

Quality First or Time First?

Before we explore this question we need to establish something. If the issue is Safety then that always goes First – and by safety we mean “a risk of harm that everyone agrees is unacceptable”.


figure_running_hamster_wheel_150_wht_4308Many Improvement Zealots state dogmatically that the only way reach the Nirvanah of “Right Thing – On Time – On Budget” is to focus on Quality First.

This is incorrect.  And what makes it incorrect is the word only.

Experience teaches us that it is impossible to divert people to focus on quality when everyone is too busy just keeping afloat. If they stop to do something else then they will drown. And they know it.

The critical word here is busy.

‘Busy’ means that everyone is spending all their time doing stuff – important stuff – the work, the checking, the correcting, the expediting, the problem solving, and the fire-fighting. They are all busy all of the time.

So when a Quality Zealot breezes in and proclaims ‘You should always focus on quality first … that will solve all the problems’ then the reaction they get is predictable. The weary workers listen with their arms-crossed, roll-their eyes, exchange knowing glances, sigh, shrug, shake their heads, grit their teeth, and trudge back to fire-fighting. Their scepticism and cynicism has been cut a notch deeper. And the weary workers get labelled as ‘Not Interested In Quality’ and ‘Resisting Change’  and ‘Laggards’ by the Quality Zealot who has spent more time studying and regurgitating rhetoric than investing time in observing and understanding reality.

The problem here is the seemingly innocuous word ‘always’. It is too absolute. Too black-and-white. Too dogmatic. Too simple.

Sometimes focussing on Quality First is a wise decision. And that situation is when there is low-quality and idle-time. There is some spare capacity to re-invest in understanding the root causes of the quality issues,  in designing them out of the process, and in implementing the design changes.

But when everyone is busy – when there is no idle-time – then focussing on quality first is not a wise decision because it can actually make the problem worse!

[The Quality Zealots will now be turning a strange red colour, steam will be erupting from their ears and sparks will be coming from their finger-tips as they reach for their keyboards to silence the heretical anti-quality lunatic. “Burn, burn, burn” they rant]. 

When everyone is busy then the first thing to focus on is Time.

And because everyone is busy then the person doing the Focus-on-Time stuff must be someone else. Someone like an Improvementologist.  The Quality Zealot is a liability at this stage – but they become an asset later when the chaos has calmed.

And what our Improvementologist is looking for are queues – also known as Work-in-Progress or WIP.

Why WIP?  Why not where the work is happening? Why not focus on resource utilisation? Isn’t that a time metric?

Yes, resource utilisation is a time-related metric but because everyone is busy then resource utilisation will be high. So looking at utilisation will only confirm what we already know.  And everyone is busy doing important stuff – they are not stupid – they are busy and they are doing their best given the constraints of their process design.        

The queue is where an Improvementologist will direct attention first.  And the specific focus of their attention is the cause of the queue.

This is because there is only one cause of a queue: a mismatch-over-time between demand and activity.

So, the critical first step to diagnosing the cause of a queue is to make the flow visible – to plot the time-series charts of demand, activity and WIP.  Until that is done then no progress will be made with understanding what is happening and it wil be impossible to decide what to do. We need a diagnosis before we can treat. And to get a diagnosis we need data from an examination of our process; and we need data on the history of how it has developed. And we need to know how to convert that data into information, and then into understanding, and then into design options, and then into a wise decision, and then into action, and then into improvement.

And we now know how to spot an experienced Improvementologist because the first thing they will look for are the Queues not the Quality.

But why bother with the flow and the queues at all? Customers are not interested in them! If time is the focus then surely it is turnaround times and waiting times that we need to measure! Then we can compare our performance with our ‘target’ and if it is out of range we can then apply the necessary ‘pressure’!

This is indeed what we observe. So let us explore the pros and cons of this approach with an example.

We are the manager of a support department that receives requests, processes them and delivers the output back to the sender. We could be one of many support departments in an organisation:  human resources, procurement, supplies, finance, IT, estates and so on. We are the Backroom Brigade. We are the unsung heros and heroines.

The requests for our service come in different flavours – some are easy to deal with, others are more complex.  They also come with different priorities – urgent, soon and routine. And they arrive as a mixture of dribbles and deluges.  Our job is to deliver high quality work (i.e. no errors) within the delivery time expected by the originator of the request (i.e. on time). If  we do that then we do not get complaints (but we do not get compliments either).

From the outside things look mostly OK.  We deliver mostly on quality and mostly on time. But on the inside our department is in chaos! Every day brings a new fire to fight. Everyone is busy and the pressure and chaos are relentless. We are keeping our head above water – but only just.  We do not enjoy our work-life. It is not fun. Our people are miserable too. Some leave – others complain – others just come to work, do stuff, take the money and go home – like Zombies. They comply.

three_wins_agreementOnce in the past we were were seduced by the sweet talk of a Quality Zealot. We were promised Nirvanah. We were advised to look at the quality of the requests that we get. And this suggestion resonated with us because we were very aware that the requests were of variable quality. Our people had to spend time checking-and-correcting them before we could process them.  The extra checking had improved the quality of what we deliver – but it had increased our costs too. So the Quality Zealot told us we should work more closely with our customers and to ‘swim upstream’ to prevent the quality problems getting to us in the first place. So we sent some of our most experienced and most expensive Inspectors to paddle upstream. But our customers were also very busy and, much as they would have liked, they did not have time to focus on quality either. So our Inspectors started doing the checking-and-correcting for our customers. Our people are now working for our customers but we still pay their wages. And we do not have enough Inspectors to check-and-correct all the requests at source so we still need to keep a skeleton crew of Inspectors in the department. And these stay-at-home Inspectors  are stretched too thin and their job is too pressured and too stressful. So no one wants to do it.And given the choice they would all rather paddle out to the customers first thing in the morning to give them as much time as possible to check-and-correct the requests so the days work can be completed on time.  It all sounds perfectly logical and rational – but it does not seem to have worked as promised. The stay-at-home Inspectors can only keep up with the more urgent work,  delivery of the less urgent work suffers and the chronic chaos and fire-fighting are now aggravated by a stream of interruptions from customers asking when their ‘non-urgent’ requests will be completed.

figure_talk_giant_phone_anim_150_wht_6767The Quality Zealot insisted we should always answer the phone to our customers – so we take the calls – we expedite the requests – we solve the problems – and we fight-the-fire.  Day, after day, after day.

We now know what Purgatory means. Retirement with a pension or voluntary redundancy with a package are looking more attractive – if only we can keep going long enough.

And the last thing we need is more external inspection, more targets, and more expensive Quality Zealots telling us what to do! 

And when we go and look we see a workplace that appears just as chaotic and stressful and angry as we feel. There are heaps of work in progress everywhere – the phone is always ringing – and our people are running around like headless chickens, expediting, fire-fighting and getting burned-out: physically and emotionally. And we feel powerless to stop it. So we hide.

Does this fictional fiasco feel familiar? It is called the Miserable Job Purgatory Vortex.

Now we know the characteristic pattern of symptoms and signs:  constant pressure of work, ever present threat of quality failure, everyone busy, just managing to cope, target-stick-and-carrot management, a miserable job, and demotivated people.

The issue here is that the queues are causing some of the low quality. It is not always low quality that causes all of the queues.

figure_juggling_time_150_wht_4437Queues create delays, which generate interruptions, which force investigation, which generates expediting, which takes time from doing the work, which consumes required capacity, which reduces activity, which increases the demand-activity mismatch, which increases the queue, which increases the delay – and so on. It is a vicious circle. And interruptions are a fertile source of internally generated errors which generates even more checking and correcting which uses up even more required capacity which makes the queues grow even faster and longer. Round and round.  The cries for ‘we need more capacity’ get louder. It is all hands to the pump – but even then eventually there is a crisis. A big mistake happens. Then Senior Management get named-blamed-and shamed,  money magically appears and is thrown at the problem, capacity increases,  the symptoms settle, the cries for more capacity go quiet – but productivity has dropped another notch. Eventually the financial crunch arrives.    

One symptom of this ‘reactive fire-fight design’ is that people get used to working late to catch up at the end of the day so that the next day they can start the whole rollercoaster ride again. And again. And again. At least that is a form of stability. We can expect tomorrow to be just a s miserable as today and yesterday and the day before that. But TOIL (Time Off In Lieu) costs money.

The way out of the Miserable Job Purgatory Vortex is to diagnose what is causing the queue – and to treat that first.

And that means focussing on Time first – and that means Focussing on Flow first.  And by doing that we will improve delivery, improve quality and improve cost because chaotic systems generate errors which need checking and correcting which costs more. Time first is a win-win-win strategy too.

And we already have everything we need to start. We can easily count what comes in and when and what goes out and when.

The first step is to plot the inflow over time (the demand), the outflow over time (the activity), and from that we work out and plot the Work-in-Progress over time. With these three charts we can start the diagnostic process and by that path we can calm the chaos.

And then we can set to work on the Quality Improvement.  


13/01/2013Newspapers report that 17 hospitals are “dangerously understaffed”  Sound familiar?

Next week we will explore how to diagnose the root cause of a queue using Time charts.

For an example to explore please play the SystemFlow Game by clicking here

 

The Management of Victimosis

erasable_sad_face_150_wht_6089One of the commonest psycho-socio-economic diseases is Victimosis.

This disease has a characteristic set of symptoms and signs. The symptoms are easy to detect – and the easiest way is to close your eyes and listen to the language being used. There is a characteristic vocabulary.  ‘Yes but’ is common as is ‘If only’ and ‘They should’ and ‘Not my’ and ‘Too busy’.  Hearing these phrases used frequently is good evidence that the subject is suffering from Victimosis.

Everyone suffers from Acute Victimosis occasionally, especially if they are tired and suffer a series of emotional set backs.  With the support of relatives and friends our psychoimmune system is able to combat the cause and return us to healthy normality. We are normally able to heal our emotional wounds.

Unfortunately Victimosis is an infectious and highly contagious condition and with a large enough innoculum it can spread until almost everyone in the organisation is affected to some degree.  When this happens the Victimosis behaviour can become the norm and awareness of the symptoms slips from consciousness. Victimosis then becomes the unspoken dominant culture and the transition to the Chronic Victimosis phase is complete.

dna_magnifying_glass_150_wht_8959Research has shown that Victimosis is an acquired disease linked to a transmissable meme that is picked up early in life. The meme can be transmitted person-to-person and also through mass communication systems which then leads to rapid dissemination. Typical channels are newspapers, television, the internet and now social media.  Just sample the daily news and observe how much Victimosis language is in circulation.

Those more susceptible to infection can develop into chronic carriers who constantly infect and reinfect others.  The outward mainfestations of the chronic form are incessant complaining, criticising, irrational decisions, ineffective actions, blaming and eventually depression, hopelessness and terminal despair.  The chronically infected may aggregate into like-minded groups as a safety-in-numbers reflex response.  These groups are characterised  by having a high proportion of people with the same temperament; particularly the Guardian preference (the Supervisors, Inspectors, Providers and Protectors who make up two thirds of the population).

Those able to resist infection find the context and culture toxic and they take action. They leave.

The outward manifestations of Chronic Victimosis are GroupThink and Silosis.  GroupThink is where collectives start to behave as one and their group-rhetoric becomes progressively less varied and more dogmatic. Silosis is a form of organisational tribalism where Departments become separated from each other, conceptually, emotionally, physically and financially. Both natural reactions only aggravate the condition and accelerate the decline.

patient_stumbling_with_bandages_150_wht_6861One of the effects of the Victimosis-meme is Agnostic Hyper-Reactivity. This is where both the Individuals and their Silos develop a thick emotional protective membrane that distorts their perception.  It is not that they do not sense what is happening – it is that they do not perceive it or that they perceive it in a distorted way.  This is the Agnosia part – literally ‘not knowing’.

Unfortunately being ignorant of Reality does not help and eventually the pressure of Reality builds up and punches a hole through the emotional barrier.  Something exceptionally bad happens that cannot be discounted or ignored. This is the ‘crisis‘ stage and it elicits a characteristic reflex reaction. An emotional knee-jerk. Unfortunately the reflex is an over-reaction and is poorly focussed and badly coordinated – so it does more harm than good.

This is the hyper-reactivity part.

The blind reflex reaction further destabilises an already unstable situation and accelerates the decline.  It creates a positive feedback loop that can quickly escalate to verbal, written and then psychological and physical conflict. The Lose-Lose-Lose of Self-Destructive behaviour that is characteristic of the late phase.  And that is not all.  Over time the reflex reaction gets less effective as the Victimosis Membrane thickens. The reflex fades out.  This is a dangerous development because on the surface it looks like things are improving, there is less conflict, but in reality the patient is slipping into pre-terminal Victimosis.

Fortunately there is a treatment for Victimosis.

It is called Positivicillin.

herbal_supplement_400_wht_8492This is not a new wonder drug, it is a natural product. We all produce Positivicillin and some of us produce more than others: they are called Optimists.  Positivicillin works by channelling the flow of emotional energy into the reflection-and-action pathways. Naturally occurring Positivicillin has a long-half life: the warm glow of success lasts a long time.  Unfortunately Positivicillin is irreversibly deactivated by the emotional toxin generated by the Victimosis meme: a toxin called Discountin. So in the presence of Discountin the affected person needs to generate more Positivicillin and to do so continuously and this leads to emotional exhaustion. The diffusion of Positivicillin is impeded by the Victimosis Membrane so if subject has a severe case of Chronic Victimosis then they may need extrinsic Positivicillin treatment at high dose and for a long time to prevent terminal decline. The primary goal of emergency treatment is to neutralise the excess Discountin for long enough that the natural production of Positivicillin can start to work.

So where can we get supplies of extrinsic Positivicillin from?

In its pure form Positivicillin is rare and expensive.  The number of naturally occurring Eternal Optimist Exporters is small and their collective Positivicillin production capability is limited. Healthy organisations value and attract them; unhealthy ones discount and reject them.

wine_toast_pc_400_wht_4449no_smoking_400_wht_6805So we are forced to resort to using more abundant, cheaper but inferior drugs.  One is called Alcoholimycin and another is Tobaccomycin.  They are both widely available and affordable but they have long term irreversible toxic side effects.

Chronic Victimosis is endemic so chronic abuse of Tobaccomycin and Alcoholimycin is common and, in an attempt to restrict their negative long term effects, both drugs are heavily taxed by the Authorities.

Unfortunately this only aggravates the spread of Chronic Victimosis which some report is a sign of the same condition affecting the Authorties! These radicals are calling for de-regulation of the more potent variants such a Cannabisimycin but the Authorities have opted for a tightly regulated supply of symptom-suppressants such as Anxiolytin and Antidepressin. These are now freely available and do help those who want to learn to cure themselves.

The long term goal of the Victimosis Research Council is to develop ways to produce pure Positivicillin and to treat the most severe cases of Chronic Victimosis; and to find ways to boost the natural production of Positivicillin within less seriously affected individuals and organisations.


Chronic Victimosis is not a new disease – it has been described in various forms throughout recorded history – so the search for a cure starts with the historical treatments – one of which is Confessmycin. This has been used for centuries and appears to work well for some but not others and this idiosyncratic response is believed to be due to the presence (or not) of the Rel-1-Gion meme. Active dissemination of a range of Rel-1-Gion meme variants (and the closely linked Pol-1-Tic meme variants) has been tried with considerable success but does not appear to be a viable long term option.

A recent high-tech approach is called a Twimplant.  This is an example of the Social-Media class of biopsychosocial feedback loops that uses the now ubiquitous mobiphonic symbiont to connect the individual to a regular supply of positive support, ideas and evidence called P-Tweets.  It is important to tune the Twimplant correctly because the same device can also pick up distress signals broadcast by sufferers of Chronic Victimosis who are attempting to dilute their Discountin by digitising it and exporting it to everyone else. These are called N-Tweets and are easily identifiable by their Victimosis vocabulary. N-tweets can be avoided by adopting an Unfollow policy.

heart_puzzle_piece_missing_pa_150_wht_4829One promising line of new research is called R2LM probe therapy.  This is an unconventional and innovative way of curing Chronic Victimosis. The R2LM probe is designed to identify the gaps in the organisational memetic code and to guide delivery of specific meme transplants that fill the gaps it reveals. One common gap is called the OM-meme deletion and one effective treatment for this is called FISH. Taking a course of FISH injections or using a FISH immersion technique leads to a rapid and sustained improvement in emotional balance.  That in-turn leads to an increase in the natural production of Positivicillin. From that point on the individual and can dissolve the Victimosis Membrance and correct their perceptual distortion. The treatment is sometimes uncomfortable but those who completed the course will vouch for its effectiveness.

For the milder forms of Victimosis it is possible to self-diagnose and to self-treat.

The strategy here is to actively reduce the production of Discountin and to boost the natural production of Positivicillin. These have a synergistic effect. The first step is to practice listening for the Victimosis vocabulary using a list of common phrases.  The patient is taught to listen for these in spoken communication and to look for them in written communication. Spoken communication includes their Internal Voice. The commonest phrases are:

1. “Yes but …”
2. “If only  …”
3. “I/You/We/They should …”
4. “I/We can’t …”
5. “I/We hope …”
6. “Not My/Our fault …”
7. “Constant struggle …”
8. “I/We do not know …”
9. “I am too busy to …”

The negative emotional impact of these phrases is caused by the presence of the Discountin toxin.

The second step is to substitute the contaminated phrase with an equivalent one where the Discountin is deactivated using Positivicillin. This deliberate and conscious substitution is easiest in written communication, then externally spoken and finally the Internal Voice. The replacements for the above are …

1. “Yes, and …”
2. “Next time …”
3. “I/We could …”
4. “I/We can …”
5. “I/We know …”
6. “My/Our responsibility …”
7. “Endless opportunity …”
8. “I/We will learn …”
9. “It is too important not to …”

figure_check_mark_celebrate_anim_150_wht_3617The system-wide benefits of the prompt and effective management of Chronic Victimosis are enormous. There is more reflective consideration and more effective action. There is success and celebration where before there was failure and frustration. The success stimulates natural release of more Positivicillin which builds a positive reinforcement feedback loop.  In addition the other GA-memes become progressively switched off and the signs of Passive Persecutitis and Reactive Rescuopathy resolve.

The combined effect leads to the release of Curiositonin, the natural inquisitiveness hormone, and Excitaline – the hormone that causes the addictive feeling of eager anticipation. The racing heart and the dry mouth.

From then on the ex-patient is able to maintain their emotional balance, to further develop their emotional resilience, and to assist other sufferers.  And that is a win for everyone.

The Heart of Change

In 1628 a courageous and paradigm shifting act happened. A small 72-page book was published in Frankfurt that openly challenged 1500 years of medical dogma. The book challenged the authority of Galen (129-200) the most revered medical researcher of antiquity and Hippocrates (460 BC – 370 BC) the Father of Medicine.

The writer of the book was a respected and influential English doctor called William Harvey (1578-1657) who was physician to King James I and who became personal physician to King Charles I.

William_HarveyWilliam Harvey was from yeoman stock. The salt-of-the-earth. Loyal, honest and hard-working free men often owned their land – but who were way down the social pecking order. They were the servant class.

William was the eldest son of Thomas Harvey from Folkstone who had a burning ambition to raise the station of his family from yeoman to gentry. This implied that the family was allowed to have their own coat of arms. To the modern mind this is almost meaningless – in the 17th Century it was not!

And Thomas was wealthy enough to have William formally educated and the dutiful William worked hard at his studies and was rewarded by gaining a place at Caius College in Cambridge University.  John Caius (1510-1573) was a physician who had studied in Padua, Italy – the birthplace of modern medicine. William did well and after graduating from Cambridge in 1597 he too travelled through Europe to study in Padua. There he saw Galenic dogma challenged and defused using empirical evidence. This was at the same time that Galileo Galilei (1564-1642) was challenging the geocentric dogma of the Catholic Church using empirical evidence gained by simple celestial observation with his new telescope. This was the Renaissance. The Rebirth of Learning. This was the end of the Dark Ages of Dogma.

Harvey brought this “new thinking” back to Elizabethan England and decided to focus his attention on the heart. And what Harvey discovered was that the accepted truth from the ancients about how the heart worked was wrong. Galen was wrong. Hippocrates was wrong.

But this was not the most interesting part of the story.  It was the how he proved it that was radically different. He used evidence from reality to disprove the rhetoric. He used the empirical method espoused by Francis Bacon (1561-1626): what we now call the Scientific Method. In effect what Harvey said was “If you do not believe or agree with me then all you need to do is repeat the observation yourself.  Do an autopsy“.  [aut=self and opsy=see]. William Harvey saw and conducted human dissection in Padua, and practiced both it and animal vivisection back in England – and by that means he discovered how the heart actually worked.

Harvey opened a crack in the cultural ice that had frozen medical innovation for 1500 years. The crack in the paradigm was a seed of doubt planted by a combination of curiosity and empirical experimentation:

Q1: If Galen was wrong about the heart then what else was he wrong about? The Four Humours too?
Q2: If the heart is just a simple pump then where does the Spirit reside?

Looking back with our 21st century perspective these are meaningless questions.  To a person in the 17th Century these were fundamental paradigm-challenging questions.  They rocked the whole foundation of their belief system.  The believed that illness was a natural phenomenon and was not caused by magic, curses and evil spirits; but they believed that celestial objects, the stars and planets, were influential. In 1628 astronomy and astrology were the same thing.   

And Harvey was savvy. He was both religious and a devout Royalist and he knew that he would need the support of the most powerful person in England – the monarch. And he knew that he needed to be a respectable member of a powerful institution – the Royal College of Physicians (RCP) which he gained in 1604. A remarkable achievement in itself for someone of yeoman stock. With this ticket he was able to secure a position at St Bartholomew’s Hospital in Smithfield, London and in 1615 he became the RCP Lumleian Lecturer which involved lecturing on anatomy – which he did from 1616.  By virtue of his position Harvey was able to develop a lucrative private practice in London and by that route was introduced to the Court. In 1618 he was appointed as Physician Extraordinary to King James I. [The Physician Ordinary was the top job].

And even with this level of influence, credibility and royal support his paradigm-challenging message met massive cultural and political resistance because he was challenging a 1500 year old belief.

Over the 12 years between 1616 and 1628 Harvey invested a lot of time sharing his ideas and the evidence with influential friends and he used their feedback to deepen his understanding, to guide his experiments, and to sharpen his arguments. He had learned how to debate at school and had developed his skill at Cambridge so he know how to turn argments-against into arguments-for.

Harvey was intensely curious, he knew how to challenge himself, to learn, to influence others, and to change their worldview.  He knew that easily observable phenomemon could help spread the message – such as the demonstration of venous valves in the arm illustrated in his book.  

DeMotuCordisAfter the publication of De Motu Cordis in 1628 his personal credibility and private practice suffered massively because as a self-declared challenger of the current paradigm he was treated with skepticism and distrust by his peers. Gossip is effective.

And even with all his passion, education, evidence, influence and effort it still took 20 years for his message to become widely enough accepted to survive him.  And it did so because others resonated with the message; others like a Rene Descartes (1596-1650). 

William Harvey is now remembered as one of the founders of modern medical science.  When he published De Motu Cordis he triggered a paradim shift – one that we take for granted today.  Harvey showed that the path to improvement is through respectfully challenging accepted dogma with a combination of curiosity, humility, hard-work, and empirical evidence. Reality reinforced rhetoric.

Today we are used to having the freedom of speech and we are familiar with using experimental data to test our hypotheses.  In 1628 this was new thinking and was very risky. People were burned at the stake for challenging the authority of the Catholic Church and the Holy Roman Inquisition was still active well into the 18th Century!

Harvey was also innovative in the use of arithmetic. He showed that the volume of blood pumped by the heart in a day was far more than the liver could reasonably generate.  But at that time arithmetic was the domain of merchants, accountants and money-lenders and was not seen as a tool that a self-respecting natural philosopher would use!  The use of mathematics as a scientific tool did not really take off until after Sir Isaac Newton (1642-1727) published the Principia in 1687 – 30 years after Harvey’s death. [To read more about William Harvey click here].

William Harvey was an Improvementologist.

 So what lessons can modern Improvement Scientists draw from his story?

  • The first is that all significant challanges to current thinking will meet emotional and political resistance. They will be discounted and ridiculed because they challenge the authority of experts.
  • The second is that challenges must be made respectfully. The current thinking has both purpose and value. Improvements build on the foundation of knowledge and only challenge what is not fit for purpose.
  • The third is that the challenge must be more than rhetorical – it must be backed with replicatable evidence. A difference of opinion is just that. Reality is the ultimate arbiter.
  • The fourth is that having an idea is not enough – testig, proving, explaining and demonstrating are needed too. It is hard work to change a mental paradigm and it requires an emotionally secure context to do it. People who are under pressure will find it more difficult and more traumatic. 
  • The fifth is that patience and persistence are needed. Worldview change takes time and happen in small steps. The new paradigm needs to find its place.

And Harvey did not say that Galen and Hippocrates were completely wrong – just partly wrong. And he explained that the reason that Hippocrates and Galen could not test their ideas about human anatomy was because dissection of human bodies was illegal in Greek and Roman societies. Padua in Renaissance Italy was one of the first places where dissection was permitted by Law.   

So which part of the Galenic dogma did Harvey challenge?

He challenged the dogma that blood was created continuously by the liver. He challenged the dogma that there were invisible pores between the right and left sides of the heart. He challenged the dogma that the arteries ‘sucked’ the blood from the heart. He challenged the dogma that the ‘vitalised’ arterial blood was absorbed by the tissues. And he challenged these beliefs with empirical evidence. He showed evidence that the blood circulated fom the right heart to the lungs to the left heart to the body and back to the right heart. He showed evidence that the heart was a muscular pump. And he showed evidence that it worked the same way in man and in animals.  

FourHumoursIn so doing he undermined the foundation of the whole paradigm of ancient belief that illness was the result of an imbalance between the Four Humours. Yellow Bile (associated with the liver), Black Bile (associated with the Spleen), Blood (as ociated with the heart) and Phlegm (associated with the lungs).   

We still have the remnants of this ancient belief in our language.  The Four Humours were also associated with Four Temperaments – four observable personality types. The phlegmatic type (excess phlegm), the sanguine type (excess blood), the choleric type (excess yellow bile), and the melancholic type (excess black bile).

We still talk about “the heart of the matter” and being “heartless”, “heartfelt”  and “change of heart” because the heart was believed to be where emotion and passion resided. Sanguine is the term given to people who show warmth, passion, a live-now-pay-later, optimistic and energetic disposition. And this is not an unreasonable hypothesis given that we are all very aware of changes in how our heart beats when we are emotionally aroused; and how the color of our skin changes.

So when Harvey suggested that blood flowed in a circle from the heart to the arteries and back to the heart via the veins; and that the heart was just a pump then this idea shook the current paradigm on many levels – right down to its roots.

And the ancient justification for a whole raft of medical diagnoses, prognoses and treatments was challenged. The House of Cards was challenged. And many people owed their livelihoods to these ancient beliefs – so it is no surprise that his peers were not jumping  for joy to hear what Harvey said.

But Harvey had reality on his side – and reality trumps rhetoric.

And the same is true today, 500 years later.

The current paradigm is being shaken. The belief that we can all live today and pay tomorrow. The belief that our individual actions have no global impact and no long lasting consequences. The belief that competition is the best route to contentment.

The evidence is accumulating that these beliefs are wrong.

The difference is that today the paradigm is being challenged by a collective voice – not by a lone voice.

Subscribe: [smlsubform]

Shifting, Shaking and Shaping

Stop Press: For those who prefer cartoons to books please skip to the end to watch the Who Moved My Cheese video first.


ThomasKuhnIn 1962 – that is half a century ago – a controversial book was published. The title was “The Structure of Scientific Revolutions” and the author was Thomas S Kuhn (1922-1996) a physicist and historian at Harvard University.  The book ushered in the concept of a ‘paradigm shift’ and it upset a lot a people.

In particular it upset a lot of scientists because it suggested that the growth of knowledge and understanding is not smooth – it is jerky. And Kuhn showed that the scientists were causing the jerking.

Kuhn described the process of scientific progress as having three phases: pre-science, normal science and revolutionary science.  Most of the work scientists do is normal science which means exploring, consolidating, and applying the current paradigm. The current conceptual model of how things work.  Anyone who argues against the paradigm is regarded as ‘mistaken’ because the paradigm represents the ‘truth’.  Kuhn draws on the history of science for his evidence, quoting  examples of how innovators such as Galileo, Copernicus, Newton, Einstein and Hawking radically changed the way that we now view the Universe. But their different models were not accepted immediately and ethusiastically because they challenged the status quo. Galileo was under house arrest for much of his life because his ‘heretical’ writings challenged the Church.  

Each revolution in thinking was both disruptive and at the same time constructive because it opened a door to allow rapid expansion of knowledge and understanding. And that foundation of knowledge that has been built over the centuries is one that we all take for granted.  It is a fragile foundation though. It could be all lost and forgotten in one generation because none of us are born with this knowledge and understanding. It is not obvious. We all have to learn it.  Even scientists.

Kuhn’s book was controversial because it suggested that scientists spend most of their time blocking change. This is not necessarily a bad thing. Stability for a while is very useful and the output of normal science is mostly positive. For example the revolution in thinking introduced by Isaac Newton (1643-1727) led directly to the Industrial Revolution and to far-reaching advances in every sphere of human knowledge. Most of modern engineering is built on Newtonian mechanics and it is only at the scales of the very large, the very small and the very quick that it falls over. Relativistic and quantum physics are more recent and very profound shifts in thinking and they have given us the digital computer and the information revolution. This blog is a manifestation of the quantum paradigm.

Kuhn concluded that the progess of change is jerky because scientists create resistance to change to create stability while doing normal science experiments.  But these same experiments produce evidence that suggest that the current paradigm is flawed. Over time the pressure of conflicting evidence accumulates, disharmony builds, conflict is inevitable and intellectual battle lines are drawn.  The deeper and more fundamental the flaw the more bitter the battle.

In contrast, newcomers seek harmony in the cacophony and propose new theories that explain both the old and the new. New paradigms. The stage is now set for a drama and the public watch bemused as the academic heavyweights slug it out. Eventually a tipping point is reached and one of the new paradigms becomes dominant. Often the transition is triggered by one crucial experiment.

There is a sudden release of the tension and a painful and disruptive conceptual  lurch – a paradigm shift. Then the whole process starts over again. The creators of the new paradigm become the consolidators and in time the defenders and eventually the dogmatics!  And it can take decades and even generations for the transition to be completed.

It is said that Albert Einstein (1879-1955) never fully accepted quantum physics even though his work planted the seeds for it and experience showed that it explained the experimental observations better. [For more about Einstein click here].              

The message that some take from Kuhn’s book is that paradigm shifts are the only way that knowledge  can advance.  With this assumption getting change to happen requires creating a crisis – a burning platform. Unfortunatelty this is an error of logic – it is a unverified generalisation from an observed specific. The evidence is growing that this we-always-need-a-burning-platform assumption is incorrect.  It appears that the growth of  knowledge and understanding can be smoother, less damaging and more effective without creating a crisis.

So what is the evidence that this is possible?

Well, what pattern would you look for to illustrate that it is possible to improve smoothly and continually? A smooth growth curve of some sort? Yes – but it is more than that.  It is a smooth curve that is steeper than anyone else’s and one that is growing steeper over time.  Evidence that someone is learning to improve faster than their peers – and learning painlessly and continuously without crises; not painfully and intermittently using crises.

Two examples are Toyota and Apple.

ToyotaLogoToyota is a Japanese car manufacturer that has out-performed other car manufacturers consistently for 40 years – despite the global economic boom-bust cycles. What is their secret formula for their success?

WorldOilPriceChartWe need a bit of history. In the 1980’s a crisis-of-confidence hit the US economy. It was suddenly threatened by higher-quality and lower-cost imported Japanese products – for example cars.

The switch to buying Japanese cars had been triggered by the Oil Crisis of 1973 when the cost of crude oil quadrupled almost overnight – triggering a rush for smaller, less fuel hungry vehicles.  This is exactly what Toyota was offering.

This crisis was also a rude awakening for the US to the existence of a significant economic threat from their former adversary.  It was even more shocking to learn that W Edwards Deming, an American statistician, had sown the seed of Japan’s success thirty years earlier and that Toyota had taken much of its inspiration from Henry Ford.  The knee-jerk reaction of the automotive industry academics was to copy how Toyota was doing it, the Toyota Production System (TPS) and from that the school of Lean Tinkering was born.

This knowledge transplant has been both slow and painful and although learning to use the Lean Toolbox has improved Western manufacturing productivity and given us all more reliable, cheaper-to-run cars – no other company has been able to match the continued success of Japan.  And the reason is that the automotive industry academics did not copy the paradigm – the intangible, subjective, unspoken mental model that created the context for success.  They just copied the tangible manifestation of that paradigm.  The tools. That is just cynically copying information and knowledge to gain a competitive advantage – it is not respecfully growing understanding and wisdom to reach a collaborative vision.

AppleLogoApple is now one of the largest companies in the world and it has become so because Steve Jobs (1955-2011), its Californian, technophilic, Zen Bhuddist, entrepreneurial co-founder, had a very clear vision: To design products for people.  And to do that they continually challenged their own and their customers paradigms. Design is a logical-rational exercise. It is the deliberate use of explicit knowledge to create something that delivers what is needed but in a different way. Higher quality and lower cost. It is normal science.

Continually challenging our current paradigm is not normal science. It is revolutionary science. It is deliberately disruptive innovation. But continually challenging the current paradigm is uncomfortable for many and, by all accounts, Steve Jobs was not an easy person to work for because he was future-looking and demanded perfection in the present. But the success of this paradigm is a matter of fact: 

“In its fiscal year ending in September 2011, Apple Inc. hit new heights financially with $108 billion in revenues (increased significantly from $65 billion in 2010) and nearly $82 billion in cash reserves. Apple achieved these results while losing market share in certain product categories. On August 20, 2012 Apple closed at a record share price of $665.15 with 936,596,000 outstanding shares it had a market capitalization of $622.98 billion. This is the highest nominal market capitalization ever reached by a publicly traded company and surpasses a record set by Microsoft in 1999.”

And remember – Apple almost went bust. Steve Jobs had been ousted from the company he co-founded in a boardroom coup in 1985.  After he left Apple floundered and Steve Jobs proved it was his paradigm that was the essential ingredient by setting up NeXT computers and then Pixar. Apple’s fortunes only recovered after 1998 when Steve Jobs was invited back. The rest is history so click to see and hear Steve Jobs describing the Apple paradigm.

So the evidence states that Toyota and Apple are doing something very different from the rest of the pack and it is not just very good product design. They are continually updating their knowledge and understanding – and they are doing this using a very different paradigm.  They are continually challenging themselves to learn. To illustrate how they do it – here is a list of the five principles that underpin Toyota’s approach:

  • Challenge
  • Improvement
  • Go and see
  • Teamwork
  • Respect

This is Win-Win-Win thinking. This is the Science of Improvement. This is Improvementology®.


So what is the reason that this proven paradigm seems so difficult to replicate? It sounds easy enough in theory! Why is it not so simple to put into practice?

The requirements are clearly listed: Respect for people (challenge). Respect for learning (improvement). Respect for reality (go and see). Respect for systems (teamwork).

In a word – Respect.

Respect is a big challenge for the individualist mindset which is fundamentally disrespectful of others. The individualist mindset underpins the I-Win-You-Lose Paradigm; the Zero-Sum -Game Paradigm; the Either-Or Paradigm; the Linear-Thinking Paradigm; the Whole-Is-The-Sum-Of-The-Parts Paradigm; the Optimise-The-Parts-To-Optimise-The-Whole Paradigm.

Unfortunately these are the current management paradigms in much of the private and public worlds and the evidence is accumulating that this paradigm is failing. It may have been adequate when times were better, but it is inadequate for our current needs and inappropriate for our future needs. 


So how can we avoid having to set fire to the current failing management paradigm to force a leap into the cold and uninviting reality of impending global economic failure?  How can we harness our burning desire for survival, security and stability? How can we evolve our paradigm pro-actively and safely rather than re-actively and dangerously?

all_in_the_same_boat_150_wht_9404We need something tangible to hold on to that will keep us from drowning while the old I-am-OK-You-are-Not-OK Paradigm is dissolved and re-designed. Like the body of the caterpillar that is dissolved and re-assembled inside the pupa as the body of a completely different thing – a butterfly.

We need a robust  and resilient structure that will keep us safe in the transition from old to new and we also need something stable that we can steer to a secure haven on a distant shore.

We need a conceptual lifeboat. Not just some driftwood,  a bag of second-hand tools and no instructions! And we need that lifeboat now.

But why the urgency?

UK_PopulationThe answer is basic economics.

The UK population is growing and the proportion of people over 65 years old is growing faster.  Advances in healthcare means that more of us survive age-related illnesses such as cancer and heart disease. We live longer and with better quality of life – which is great.

But this silver-lining hides a darker cloud.

The proportion of elderly and very elderly will increase over the next 20 years as the post WWII baby-boom reaches retirement age. The number of people who are living on pensions is increasing and the demands on health and social services is increasing.  Pensions and public services are not paid out of past savings  they are paid out of current earnings.  So the country will need to earn more to pay the bills. The UK economy will need to grow.

UK_GDP_GrowthBut the UK economy is not growing.  Our Gross Domestic Product (GDP) is currently about £380 billion and flat as a pancake. This sounds like a lot of dosh – but when shared out across the population of 56 million it gives a more modest figure of just over £100 per person per week.  And the time-series chart for the last 20 years shows that the past growth of about 1% per quarter took a big dive in 2008 and went negative! That means serious recession. It recovered briefly but is now sagging towards zero.

So we are heading for a big economic crunch and hiding our heads in the sand and hoping for the best is not a rational strategy. The only way to survive is to cut public services or for tax-funded services to become more productive. And more productive means increasing the volume of goods and services for the same cost. These are the services that we will need to support the growing population of  dependents but without increasing the cost to the country – which means the taxpayer.

The success of Toyota and Apple stemmed from learning how to do just that: how to design and deliver what is needed; and how to eliminate what is not; and how to wisely re-invest the released cash. The difference can translate into higher profit, or into growth, or into more productivity. It just depends on the context.  Toyota and Apple went for profit and growth. Tax-funded public services will need to opt for productivity. 

And the learning-productivity-improvement-by-design paradigm will be a critical-to-survival factor in tax-payer funded public services such as the NHS and Social Care.  We do not have a choice if we want to maintain what we take for granted now.  We have to proactively evolve our out-of-date public sector management paradigm. We have to evolve it into one that can support dramatic growth in productivity without sacrificing quality and safety.

We cannot use the burning platform approach. And we have to act with urgency.

We need a lifeboat!

Our current public sector management paradigm is sinking fast and is being defended and propped up by the old school managers who were brought up in it.  Unfortunately the evidence of 500 years of change says that the old school cannot unlearn. Their mental models go too deep.  The captains and their crews will go down with their ships.  [Remember the Titanic the unsinkable ship that sank in 1912 on the maiden voyage. That was a victory of reality over rhetoric.]

Those of us who want to survive are the ‘rats’. We know when it is time to leave the sinking ship.  We know we need lifeboats because it could be a long swim! We do not want to freeze and drown during the transition to the new paradigm.

So where are the lifeboats?

One possibility is an unfamiliar looking boat called “6M Design”. This boat looks odd when viewed through the lens of the conventional management paradigm because it combines three apparently contradictiry things: the rational-logical elements of system design;  the respect-for-people and learning-through-challenge principles embodied by Toyota and Apple; and the counter-intuitive technique of systems thinking.

Another reason it feel odd is because “6M Design” is not a solution; it is a meta-solution. 6M Design is a way of creating a good-enough-for-now solution by changing the current paradigm a bit at a time. It is a-how-to-design framework; it is not the-what-to-do solution. 6M Design is a paradigm shaper – not a paradigm shaker or a paradigm shifter.

And there is yet another reason why 6M Design does not float the current management boat.  It does not need to be controlled by self-appointed experts.  Business schools and management consultants, who have a vested interest in defending the current management paradigm, cannot make a quick buck from it because they are irrelevant. 6M Design is intended to be used by anyone and everyone as a common language for collectively engaging in respectful challenge and lifelong learning. Anyone can learn to use it. Anyone.

We do not need a crisis to change. But without changing we will get the crisis we do not want. If we choose to change then we can choose a safer and smoother path of change.

The choice seems clear.  Do you want to go down with the ship or stay afloat aboard an innovation boat?

And we will need something to help us navigate our boat.

If you are a reflective, conceptual learner then you might ike to read a synopsis of Thomas Kuhn’s book.  You can download a copy here. [There is also a 50 year anniversary edition of the original that was published this year].

And if you prefer learning from stories then there is an excellent one called “Who Moved My Cheese” that describes the same challenge of change. And with the power of the digital paradigm you can watch the video here.


Defusing Trust Eroders – Part III

<Bing Bong>

laptop_mail_PA_150_wht_2109Leslie’s computer heralded the arrival of yet another email!  They were coming in faster and faster – now that the word had got out on the grapevine about Improvementology.

Leslie glanced at the sender.

It was from Bob.  That was a surprise.  Bob had never emailed out-of-the-blue before.  Leslie was too impatient to wait until later to read the email.

<Dear Leslie, could I trouble you to ask your advice on something.  It is not urgent.  A ten minute chat on the phone would be all I need.  If that is OK please let me know a good time is and I will ring you. Bob>

Leslie was consumed with curiosity.  What could Bob possibly want advice on?  It was Leslie who sought advice from Bob – not the other way around.

Leslie could not wait and emailed back immediately that it was OK to talk now.

<Ring Ring>

L: Hello Bob, what a pleasant surprise!  I am very curious to know what you need my advice about.

B: Thank you Leslie.  What I would like your counsel on is how to engage in learning the science of improvement.

L: Wow!  That is a surprising question. I am really confused now. You helped me to learn this new thinking and now you are asking me to teach you?

B: Yes.  On the surface it seems counter-intuitive.  It is a genuine request though.  I need to learn and understand what works for you and what does not.

L: OK.  I think I am getting an idea of what you are asking.  But I am only just getting grips with the basics.  I do not know how to engage others yet and I certainly would not be able to teach anyone!

B: I must apologise.  I was not clear in my request.  I need to understand how you engaged yourself in learning.  I only provided the germ of the idea – it was you who added what was needed for it to develop into something tangible and valuable for you.  I need to understand how that happened.

L: Ahhhh! I see what you mean.  Yes.  Let me think.  Would it help if I describe my current mental metaphor?

B: That sounds like an excellent idea.

L: OK.  Well your phrase ‘germ of an idea’ was a trigger.  I see the science of improvement as a seed of information that grows into a sturdy tree of understanding.  Just like the ‘tiny acorn into the mighty oak’ concept.  Using that seed-to-tree metaphor helped me to appreciate that the seed is necessary but it is not sufficient.  There are other things that are needed too.  Soil, water, air, sunlight, and protection from hazards and predators.

I then realised that the seed-to-tree metaphor goes deeper.  One insight that I had was when I realised that the first few leaves are critical to success – because they provide the ongoing energy and food to support the growth of more leaves, and the twigs, branches, trunk, and roots that support the leaves and supply them with water and nutrients.  I see the tree as synergistic system that has a common purpose: to become big enough and stable enough to be able to survive the inevitable ups-and-downs of reality.  To weather the winter storms and survive the summer droughts.

plant_metaphor_240x135It seemed to me that the first leaf needed to be labelled ‘safety’ because in our industry if we damage our customers or our staff we do not get a second chance!  The next leaf to grow is labelled ‘quality’ and that means quality-by-design.  Doing the right thing and doing it right first time without needing inspection-and-correction. The safety and quality leaves provide the resources needed to grow the next leaf which I labelled ‘delivery’.  Getting the work done in time, on time, every time.  Together these three leaves support the growth of the fourth – ‘economy’ which means using only what is necessary and also having just enough reserve to ride over the inevitable rocks and ruts in the road of reality.

I then reflected on what the water and the sunshine would represent when applying improvement science in the real world.

It occurred to me that the water in the tree is like money in a real system.  It is required for both growth and health; it must flow to where it is needed, when it is needed and as much as needed. Too little will prevent growth, and too much water at the wrong time and wrong place is just as unhealthy.  I did some reading about the biology of trees and I learned that the water is pulled up the tree!  The ‘suck’ is created by the water evaporating from the leaves.  The plant does not have a committee that decides where the available water should go!  It is a simple self-adjusting, auto-regulating system.

The sunshine for the tree is like feedback for people.  In a plant the suns energy provides the motive force for the whole system.  In our organisations we call it motivation and the feedback loop is critical to success.  Keeping people in the dark about what is required and how they are doing is demotivating.  Healthy organisations are feedback-fuelled!

B: I see the picture in my mind clearly.  That is a powerful metaphor.  How did it help overcome the natural resistance to change?

L: Well using the 6M Design method and taking the desire to create a ‘sturdy tree of understanding’ as the goal of the seed-to-tree process, I then considered what the possible ways it could fail – the failure modes and effects analysis method that you taught me.

B: OK. Yes I see how that approach would help – approaching the problem from the far side of the invisible barrier. What insights did that lead to?

poison_faucet_150_wht_9860L: Well it highlighted that just having enough water and enough sunshine was not sufficient – it had to be clean water and the right sort of sunshine.  The quality is as critical as the quantity.  A toxic environment will kill tender new shoots of improvement long before they can get established.  Cynicism is like cyanide!  Non-specific cost cutting is like blindly wielding a pair of sharp secateurs.  Ignoring the competition from wasteful weeds and political predators is a guaranteed recipe-for-failure too.

This seed-to-tree metaphor really helped because it allowed me to draw up a checklist of necessary conditions for successful growth of knowledge and understanding.  Rather like the shopping list that a gardener might have.  Viable seeds, fertile soil, clean water, enough sunlight, and protection from threats and hazards, especially in the early stages.  And patience and perseverance.  Growing from seed takes time.  Not all seeds will germinate.  Not all seeds can thrive in the context our gardener is able to create.  And the harsher the elements the fewer the types of seed that have any chance of survival.  The conditions select the successful seeds.  Deserts select plants that hoard water so the desert remains a desert.  If money is too tight the miserly will thrive at the expense of the charitable – and money remains hoarded and fought over as the rest of the organisation withers.  And the timing is crucial – the seeds need to be planted at the right time in the cycle of change.  Too early and they cannot germinate, too late and they do not have time to become strong enough to survive in the real world winter storms.

B: Yes.  I see. The deeper you dig into your seeds-to-trees metaphor, the more insightful it becomes.

L: Bob, you just said something really profound then that has unlocked something for me.

B: Did I?  What was it?

RainForestL: You said ‘seeds-to-trees’.  Up until you said that I was unconsciously limiting myself to one-seed-to-one-tree.  Of course!  If it works for the individual it can work for the collective.  Woods and forests are collectives.  The best example I can think of is a tropical rainforest.  With ample water and sunshine the plant-collective creates a synergistic system that has endured millions of years of global climate change.  And one of the striking features of the tropical rain forest is the diversity of species.  It is as if that diversity is an important part of the design.  Competition is ever present though – all the trees compete for sunlight – but it is healthy competition.  Trees do not succeed individually by hunting each other down.  And the diversity seems to be an important component of healthy competition too.  It is as if they are in a shared race to the sun and their differences are an asset rather than a liability. If all the trees were the same the forest would be at greater risk of all making the same biological blunder and suddenly becoming extinct if their environment changes unpredictably.  Uniformity only seems to work in harsh conditions.

B: That is a profound observation Leslie.  I had not consciously made that distinction.

L: So have I answered your question?  Have I helped you?  It has certainly helped me by being asked to putting my thoughts into words.  I see it clearer too now.

B: Yes.  You are a good teacher.  I believe others will resonate with your seeds-to-trees metaphor just as I have.

L: Thank you Bob.  I believe I am beginning to understand something you said in a previous conversation – “the teacher is the person who learns the most”.  I am going to test our seeds-to-trees metaphor on the real world!  And I will feedback what I learn – because in doing that I will amplify and clarify my own learning.

B: Thank you Leslie. I look forward to learning with you.


Defusing Trust Eroders – Part II

line_figure_phone_400_wht_9858<Ring Ring><Ring Ring>

B: Hello Leslie. How are you today?

L: Hi Bob – I am OK.  Thank you for your time today.  Is 15 minutes going to be enough?

B: Yes. There is evidence that the ideal chunk of time for effective learning is around 15 minutes.

L: OK.  I said I would read the material you sent me and reflect on it.

B: Yes.  Can you retell your Nerve Curve experience as a storyboard and highlight your ‘ah ha’ moments?

L: OK.  And that was the first ‘ah ha’.  I found the storyboard format a really effective way to capture my sequence of emotional states.

campfire_burning_150_wht_174B: Yes.  There are close links between stories, communication, learning and improvement.  Before we learned to write we used campfire stories to pass collective knowledge from generation to generation.   It is an ancient, in-built skill we all have and we all enjoy a good story.

L: Yes.  My first reaction was to the way you described the Victim role.  It really resonated with how I was feeling and how I was part of the dynamic.  You were spot on with the feelings that dominated my thinking – anxiety and fear. The big ‘ah ha’ for me was to understand the discount that I was making.  Not of others – of myself.

B: OK.  What was the image that you sketched on your storyboard?

L: I am embarrased to say – you will think I am silly.

B: I will not think you are silly.

employee_diciplined_400_wht_5635I know.  And I knew that as soon as I said it.  I think I was actually saying it to myself – or part of myself.  Like I was trying to appease part of myself.  Anyway, the picture I sketched was me as a small child at school standing with my head down, hands by my sides, and being told off in front of the whole class for getting a sum wrong.  I was crying.  I was not very good at maths and even now my mind sort of freezes and I get tears in my eyes and feel scared whenever someone tries to explain something using equations!  I can feel the terror starting to well up just talking about it.

B: OK. No need to panic. Take a long breath and exhale slowly.  The story you have told is very common.  Many of our fears of failure originate from early memories of experiencing ‘education by humiliation’.  It is a blunt and ineffective motivational tool that causes untold and long lasting damage.  It is a symptom of a low quality education system design. Education is an exercise in improvement of knowledge, understanding, capability and confidence.  The unintended outcome of this clumsy teaching tactic is a belief that we cannot solve problems ourselves and it is that invalid belief that creates the self-fulfilling prophecy of repeated failure.

L: Yes! And I know I can solve maths problems – I do it all the time – and I help my children with their maths homework.  So, it is not the maths that is triggering my fear.  What is it?

B: The answer to your question will become clear.  What is the next picture on your storyboard?

emotion_head_mad_400_wht_7632The next picture was of the teacher who was telling me off.  Or rather the face of the teacher.  It was a face of frustration and anger.  I drew a thought bubble and wrote in it “This small, irritating child cannot solve even a simple maths problem and is slowing down the whole lesson by bursting into tears everytime they get stuck.  I blame the parents who are clearly too soft.  They all need to learn some discipline – the hard way.

L: Does this shed any light on your question?

B: Wow!  Yes!  It is not the maths that I am reacting to – it is the behaviour of the teacher.  I am scared of the behaviour.  I feel powerless.  They are the teacher, I am just a small, incompetent, stupid, blubbing child.  They do not care that I do not understand the question, and that I am in distress, and that I am scared that I will be embarassed in front of the whole class, and that I am scared that my parents will see a bad mark on my school report.  And I feel trapped.  I need to rationalise this.  To make sense of it.  Maybe I am stupid?  That would explain why I cannot solve the mths problem.  Maybe I should just give in and accept that I am a failure and too stupid to do maths?

There was a pause.  Then Leslie continued in a different tone.  A more determined tone.

L: But I am not a failure.  This is just my knee jerk habitual reaction to an authority figure displaying anger towards me.  I can decide how I react.  I have complete control over that.  I can disconnect the behaviour I experience and my reaction to it.  I can choose.  Wow!

B: OK. How are you feeling right now?  Can you describe it using a visual metaphor?

ready_to_launch_PA_150_wht_5052L: Um – weird.  Mixed feelings.  I am picturing myself sitting on a giant catapault.  The ends of the huge elastic bands are anchored in the present and I am sitting in the loop but it is stretched way back into the past.  There is something formless in the past that has been holding me back and the tension has been slowly building over time.  And it feels that I have just cut that tie to the past, and I am free, and I am now being accelerated into the future.  I did that.  I am in control of my own destiny and it suddenly feels fun and exciting.

B: OK. How do you feel right now about the memory of the authority figure from the past?

L: OK actually.  That is really weird.  I thought that I would feel angry but I do not.  I just feel free.  It was not them that was the problem.  Their behaviour was not my fault – and it was my reaction to their behaviour that was the issue.  My habitual behaviour.  No, wait a second. Our habitual behaviour.  It is a dynamic.  It takes both people to play the game.

There was a pause.  Leslie sensed that Bob knew that some time was needed to let the emotions settle a bit.

B: Are you OK to continue with your storyboard?

emotion_head_sad_frown_400_wht_7644L: Yes.  The next picture is of the faces of my parents.  They are looking at my school report.  They look sad and are saying “We always dreamed that Leslie would be a doctor or something like that.  I suppose we will have to settle for something less ambitious.  Do not worry Leslie, it is not your fault, it will be OK, we will help you.”  I felt like I had let them down and I had shattered their dream.  I felt so ashamed.  They had given me everything I had ever asked for.  I also felt angry with myself and with them.  And that is when I started beating myself up.  I no longer needed anyone else to do that!  I could persecute myself.  I could play both parts of the game in my own head.  That is what I did just now when it felt like I was talking to myself.

B: OK.  You have now outlined the three roles that together create the dynamic for a stable system of learned behaviour.  A system that is very resistant to change.  It is like a triangular role-playing-game.  We pass the role-hats as we swap places in the triangle and we do it in collusion with others and ourselves and we do it unconsciously.  The purpose of the game is to create opportunities for social interaction – which we need and crave – the process has a clear purpose.  The unintended outcome of this design is that it generates bad feelings, it erodes trust and it blocks personal and organisational development and improvement.  We get stuck in it – rather like a small boat in a whirlpool.  And we cannot see that we are stuck in it.  We just feel bad as we spin around in an emotional maelstrom.  And we feel cheated out of something better but we do not know what it is and how to get it.

There was a long pause.  Leslie’s mind was racing.  The world had just changed.  The pieces had been blown apart and were now re-assembling in a different configuration.  A simpler, clearer and more elegant design.

L: So, tell me if I have this right.  Each of the three roles involves a different discount?

B: Yes.

And each discount requires a different – um – tactic to defuse?

B: Yes.

So, the way to break out of this trust eroding behavioural hamster-wheel is to learn to recognise which role we are in and to consciously deploy the discount defusing tactic.

B: Yes.

And by doing that enough times we learn how to spot the traps that other people are creating and avoid getting sucked into them.

B: Yes. And we also avoid starting them ourselves.

L: Of course! And by doing that we develop growing respect for ourselves and for each other and a growing level of trust in ourselves and in others?  We have started to defuse the trust eroding behaviour and that lowers the barrier to personal and organisational development and improvement.

B: Yes.

L: So what are the three discount defusing tactics?

There was a pause.  Leslie knew what was coming next.  It would be a question.

B: What role are you in now?

L: Oh!  Yes.  I see.  I am still feeling like that small school child at school but now I am asking for the answer and I am discounting myself by assuming that I cannot solve this problem myself.  I am assuming that I need you to rescue me by telling me the answer.  I am still in the trust eroding game, I do not trust myself and I am inviting you to play too, and to reinforce my belief that I cannot solve the problem.

B: And do you need me to tell you the answer?

L: No.  I can probably work this out myself.  And if I do get stuck then I can ask for hints or nudges – not for the answer.  I need to do the learning work and I want to do it.

B: OK.  I will commit to hinting and nudging if asked, and if I do not know the answer I will say so.

L: Phew!  That was definitely an emotional rollercoaster ride on the Nerve Curve.  Looking back it all makes complete sense and I now know what to do – but at the start it felt like I was heading into the Dark Unknown.  You are right.  It is liberating and exhilarating!

B: That feeling of clarity-of-hindsight and exhilaration from learning is what we always strive for.  Both as teachers and students.

L: You mean it is the same for you?  You are still riding the Nerve Curve?  Still feeling surprised, confused, scared, resolved, enlightened then delighted?

B: Ha ha!  Yes.  Every day.  It is fun.  I believe that there is No Limit to Learning so there is an inexhaustible Font of Fun.

L: Wow! I am off to have more Fun from Learning. Thank you so much yet again.

two_stickmen_shaking_hands_puzzle_150_wht_5229B: Thank you Leslie.


Defusing Trust Eroders – Part I

texting_a_friend_back_n_forth_150_wht_5352<Beep><Beep>

Bob heard the beep and looked at his phone. There was a text message from Leslie, one of his Improvementology coachees.

It said:

“Hi Bob, Do you have time to help me with a behaviour barrier that I keep hitting and cannot see a way around?”

Bob thumbed his reply:

“Yes. I am free at the moment – please feel free to call.”

<Ring><Ring>

B: Hello Leslie. What’s on your mind?

L: Hi Bob.  I really hope  you can help me with this recurring Niggle.  I have looked through my Foundation notes and I cannot see where it is described and it does not seem to be a Nerve Curve problem.

B: I will do my best. Can you outline the context or give me an example?

L: It is easier to give you an example.  This week I was working with a team in my organisation who approached me to help them with recurring niggles in their process.  I went to see for myself and I mapped their process and identified where their Niggles were and what was driving them.  That was the easy bit.  But when I started to make suggestions of what they could do to resolve their problems they started to give me a hard time and kept saying ‘Yes, but …”.  It was as if they were asking for help but did not really want it.  They kept emphasising that all their problems were caused by other people outside their department and kept asking me what I could do about it.  I felt as if they were pushing the problem onto me and I was also feeling guilty for not being able to sort it out for them.

There was a pause. Then Bob said.

B: You are correct Leslie.  This is not a Nerve Curve issue.   It is a different people-related system issue.  It is ubiquitous and it is a potentially deadly organisational disease.  We call it Trust Eroding Behaviour.

L: That sounds exactly how it felt for me.  I went to help in good faith and quickly started to feel distrustful of their motives.  It was not a good feeling and I do not know if I want to go back.  One part of me says “Keep going – you have made a commitment” and another part of me says “Stop – you are being suckered”.  What is happening?

B: Do you remember that the Improvement Science framework has three parts – Processes, People and Systems?

L: Yes.

B: OK.  This is part of the People component and it is similar to but different from the Nerve Curve.   The Nerve Curve is a hard-wired emotional response to any change.  The Fright, Freeze, Fight, Flight response.  It is just the way we are and it is not ‘correctable’.  This is different.  This is a learned behaviour.   Which means it can be unlearned.

L: Unlearned?  That is not a concept that I am familiar with.  Can you explain?  Is it the same as forgetting?

B: Forgetting means that you cannot bring something to conscious awareness.   Unlearning is different – it operates at a deeper psychological and emotional level.  Have you ever tried to change a bad habit?

L: Yes, I have!  I used to smoke which is definitely a bad habit and I managed to give up but it was really tough.

B: What you did was to unlearn the smoking habit and replaced it with a healthier one.  You did not forget about smoking.  You could not because you are repeatedly reminded by other people who still indulge in the habit.

L:  Ah ha! I see what you mean.  Yes – after I kicked the habit I became a bit of a Stop-Smoking evangelist.  It did not seem to make much impact on the still-smokers though.  If anything my behaviour seemed to make them more determined to keep doing it – just to spite me!

B: Yes.  What you describe is what many people report.  It is part if the same learned behaviour patterns.  The habit that is causing the issue is rather like smoking because it causes short-term pleasure and long-term pain.  It is both attractive and destructive.  The reactive behaviour generates a positive feeling briefly but it is toxic to trust over the longer term, which is why we call it a Trust Eroding Behaviour.

L: What is the bad habit? I do not recognise the behaviour that you are referring to.

B: The habit is called discounting.  The reason we are not aware of it is because we do it unconsciously.

L: What is it that we do?

B: I will give you some examples.  How do you feel when all the feedback you get is silence? How do you feel when someone complains that their mistake was not their fault? How do you feel when you try to help but you hit invisible barriers that block your progess?

sad_faceL: Ouch!  Those are uncomfortable questions. When I get no feedback I feel anxious and even fearful that I have made a mistake,  and no one is telling me.  There is a conspiracy of silence and a nasty surprise is on its way.  When someone keeps complaining that even though they made the mistake they are not to blame I feel angry.  When I try to help others and I fail to then I feel anxious and sad because my reputation, credibility and self-confidence is damaged.

B: OK. No need to panic. These negative emotional reactions are the normal reaction to discounting behaviour.  Another word for discounting is disrespect.  The three primary emotions we feel are sadness, anger and fear.  Fear is the sense of impending loss; anger is the sense of present loss; and sadness is the sense of past loss.  They are the same emotions that we feel on the Nerve Curve.  What is different is the cause.  Discounting is a disrepectful behaviour that is learned.  So, it can be unlearned.

L: Oooo!  That really resonates with me.  Just reflecting on one day at work I can think of lots of examples of all of those negative feelings.  So, when and how do we learn this discounting habit?

B: It is believed that we learn this behaviour when we are very young – before the age of seven.  And because we learn it so young we internalise it and we become unaware of it.  It then becomes a habit that is reinforced with years of experience and practice.

L: Wow!  That rings true for me – and it may explain why I actively avoided some people at school – they were just toxic.  But they had friends, went to college, got jobs, married and started families – just like me.  Does that mean we grow out of it?

B: Most people unlearn some of these behavioural habits because life-experience teaches them that they are counter-productive.  We all carry some of them though, and they tend to emerge when we are tired and under pressure.  Some people get sort of stuck and carry these behaviours into their adult life.  Their behaviour can be toxic to their relationships and their organisations.

L: I definitely resonate with that statement!  Is there a way to unlearn this discounting habit?

B: Yes – just becoming aware of its existence is the first step.  There are some strategies that we can learn, practice and use to defuse the discounting behaviour and over time our bad habit can be “kicked”.

L: Wow! That sounds really useful.  And not just at work – I can see benefits in other areas of my life too.

B: Yes. Improvement science is powerful medicine.

L: So what do I need to do?

B: You have learned the 6M Design framework for resolving process niggles. There is an equivalent one for dissolving people niggles.  I will send you some links to material to read and then we can talk again.

L: Will it help me resolve the problem that I have with the department that asked for my help who are behaving like Victims?

B: Yes.

L: OK – please send me the material.  I promise to read it, reflect on it and I will arrange another conversation.  I cannot wait to learn how to nail this niggle!  I can see a huge win-win-win opportunity here.

B: OK.  The email is on its way.  I look forward to our next conversation.


The Six Dice Game

<Ring Ring><Ring Ring>

Hello, you are through to the Improvement Science Helpline. How can we help?

This is Leslie, one of your apprentices.  Could I speak to Bob – my Improvement Science coach?

Yes, Bob is free. I will connect you now.

<Ring Ring><Ring Ring>

B: Hello Leslie, Bob here. What is on your mind?

L: Hi Bob, I have a problem that I do not feel my Foundation training has equipped me to solve. Can I talk it through with you?

B: Of course. Can you outline the context for me?

L: OK. The context is a department that is delivering an acceptable quality-of-service and is delivering on-time but is failing financially. As you know we are all being forced to adopt austerity measures and I am concerned that if their budget is cut then they will fail on delivery and may start cutting corners and then fail on quality too.  We need a win-win-win outcome and I do not know where to start with this one.

B: OK – are you using the 6M Design method?

L: Yes – of course!

B: OK – have you done The 4N Chart for the customer of their service?

L: Yes – it was their customers who asked me if I could help and that is what I used to get the context.

B: OK – have you done The 4N Chart for the department?

L: Yes. And that is where my major concerns come from. They feel under extreme pressure; they feel they are working flat out just to maintain the current level of quality and on-time delivery; they feel undervalued and frustrated that their requests for more resources are refused; they feel demoralized; demotivated and scared that their service may be ‘outsourced’. On the positive side they feel that they work well as a team and are willing to learn. I do not know what to do next.

B: OK. Dispair not. This sounds like a very common and treatable system illness.  It is a stream design problem which may be the reason your Foundations training feels insufficient. Would you like to see how a Practitioner would approach this?

L: Yes please!

B: OK. Have you mapped their internal process?

L: Yes. It is a six-step process for each job. Each step has different requirements and are done by different people with different skills. In the past they had a problem with poor service quality so extra safety and quality checks were imposed by the Governance department.  Now the quality of each step is measured on a 1-6 scale and the quality of the whole process is the sum of the individual steps so is measured on a scale of 6 to 36. They now have been given a minimum quality target of 21 to achieve for every job. How they achieve that is not specified – it was left up to them.

B: OK – do they record their quality measurement data?

L: Yes – I have their report.

B: OK – how is the information presented?

L: As an average for the previous month which is reported up to the Quality Performance Committee.

B: OK – what was the average for last month?

L: Their results were 24 – so they do not have an issue delivering the required quality. The problem is the costs they are incurring and they are being labelled by others as ‘inefficient’. Especially the departments who are in budget and they are annoyed that this failing department keeps getting ‘bailed out’.

B: OK. One issue here is the quality reporting process is not alerting you to the real issue. It sounds from what you say that you have fallen into the Flaw of Averages trap.

L: I don’t understand. What is the Flaw of Averages trap?

B: The answer to your question will become clear. The finance issue is a symptom – an effect – it is unlikely to be the cause. When did this finance issue appear?

L: Just after the Safety and Quality Review. They needed to employ more agency staff to do the extra work created by having to meet the new Minimum Quality target.

B: OK. I need to ask you a personal question. Do you believe that improving quality always costs more?

L: I have to say that I am coming to that conclusion. Our Governance and Finance departments are always arguing about it. Governance state ‘a minimum standard of safety and quality is not optional’ and finance say ‘but we are going out of business’. They are at loggerheads. The service departments get caught in the cross-fire.

B: OK. We will need to use reality to demonstrate that this belief is incorrect. Rhetoric alone does not work. If it did then we would not be having this conversation. Do you have the raw data from which the averages are calculated?

L: Yes. We have the data. The quality inspectors are very thorough!

B: OK – can you plot the quality scores for the last fifty jobs as a BaseLine chart?

L: Yes – give me a second. The average is 24 as I said.

B: OK – is the process stable?

L: Yes – there is only one flag for the fifty. I know from my Foundations training that is not a cause for alarm.

B: OK – what is the process capability?

L: I am sorry – I don’t know what you mean by that?

B: My apologies. I forgot that you have not completed the Practitioner training yet. The capability is the range between the red lines on the chart.

L: Um – the lower line is at 17 and the upper line is at 31.

L: OK – how many points lie below the target of 21.

B: None of course. They are meeting their Minimum Quality target. The issue is not quality – it is money.

There was a pause.  Leslie knew from experience that when Bob paused there was a surprise coming.

B: Can you email me your chart?

A cold-shiver went down Leslie’s back. What was the problem here? Bob had never asked to see the data before.

Sure. I will send it now.  The recent fifty is on the right, the data on the left is from after the quality inspectors went in and before the the Minimum Quality target was imposed. This is the chart that Governance has been using as evidence to justify their existence because they are claiming the credit for improving the quality.

B: OK – thanks. I have got it – let me see.  Oh dear.

Leslie was shocked. She had never heard Bob use language like ‘Oh dear’.

There was another pause.

B: Leslie, what is the context for this data? What does the X-axis represent?

Leslie looked at the chart again – more closely this time. Then she saw what Bob was getting at. There were fifty points in the first group, and about the same number in the second group. That was not the interesting part. In the first group the X-axis went up to 50 in regular steps of five; in the second group it went from 50 to just over 149 and was no longer regularly spaced. Eventually she replied.

Bob, that is a really good question. My guess it is that this is the quality of the completed work.

B: It is unwise to guess. It is better to go and see reality.

You are right. I knew that. It is drummed into us during the Foundations training! I will go and ask. Can I call you back?

B: Of course. I will email you my direct number.


<Ring Ring><Ring Ring>

B: Hello, Bob here.

L: Bob – it is Leslie. I am  so excited! I have discovered something amazing.

B: Hello Leslie. That is good to hear. Can you tell me what you have discovered?

L: I have discovered that better quality does not always cost more.

B: That is a good discovery. Can you prove it with data?

L: Yes I can!  I am emailing you the chart now.

B: OK – I am looking at your chart. Can you explain to me what you have discovered?

L: Yes. When I went to see for myself I saw that when a job failed the Minimum Quality check at the end then the whole job had to be re-done because there was no time to investigate and correct the causes of the failure.  The people doing the work said that they were helpless victims of errors that were made upstream of them – and they could not predict from one job to the next what the error would be. They said it felt like quality was a lottery and that they were just firefighting all the time. They knew that just repeating the work was not solving the problem but they had no other choice because they were under enormous pressure to deliver on-time as well. The only solution they could see is was to get more resources but their requests were being refused by Finance on the grounds that there is no more money. They felt completely trapped.

B: OK. Can you describe what you did?

L: Yes. I saw immediately that there were so many sources of errors that it would be impossible for me to tackle them all. So I used the tool that I had learned in the Foundations training: the Niggle-o-Gram. That focussed us and led to a surprisingly simple, quick, zero-cost process design change. We deliberately did not remove the Inspection-and-Correction policy because we needed to know what the impact of the change would be. Oh, and we did one other thing that challenged the current methods. We plotted every attempt, both the successes and the failures, on the BaseLine chart so we could see both the the quality and the work done on one chart.  And we updated the chart every day and posted it chart on the notice board so everyone in the department could see the effect of the change that they had designed. It worked like magic! They have already slashed their agency staff costs, the whole department feels calmer and they are still delivering on-time. And best of all they now feel that they have the energy and time to start looking at the next niggle. Thank you so much! Now I see how the tools and techniques I learned in Foundations are so powerful and now I understand better the reason we learned them first.

B: Well done Leslie. You have taken an important step to becoming a fully fledged Practitioner. You have learned some critical lessons in this challenge.


This scenario is fictional but realistic.

And it has been designed so that it can be replicated easily using a simple game that requires only pencil, paper and some dice.

If you do not have some dice handy then you can use this little program that simulates rolling six dice.

The Six Digital Dice program (for PC only).

Instructions
1. Prepare a piece of A4 squared paper with the Y-axis marked from zero to 40 and the X-axis from 1 to 80.
2. Roll six dice and record the score on each (or roll one die six times) – then calculate the total.
3. Plot the total on your graph. Left-to-right in time order. Link the dots with lines.
4. After 25 dots look at the chart. It should resemble the leftmost data in the charts above.
5. Now draw a horizontal line at 21. This is the Minimum Quality Target.
6. Keep rolling the dice – six per cycle, adding the totals to the right of your previous data.

But this time if the total is less than 21 then repeat the cycle of six dice rolls until the score is 21 or more. Record on your chart the output of all the cycles – not just the acceptable ones.

7. Keep going until you have 25 acceptable outcomes. As long as it takes.

Now count how many cycles you needed to complete in order to get 25 acceptable outcomes.  You should find that it is about twice as many as before you “imposed” the Inspect-and-Correct QI policy.

This illustrates the problem of an Inspection-and-Correction design for quality improvement.  It does improve the quality of the final output – but at a higher cost.

We are treating the symptoms (effects) and ignoring the disease (causes).

The internal design of the process is unchanged so it is still generating mistakes.

How much quality improvement you get and how much it costs you is determined by the design of the underlying process – which has not changed. There is a Law of Diminishing returns here – and a big risk.

The risk is that if quality improves as the result of applying a quality target then it encourages the Governance thumbscrews to be tightened further and forces those delivering the service further into cross-fire between Governance and Finance.

The other negative consequence of the Inspect-and-Correct approach is that it increases both the average and the variation in lead time which also fuels the calls for more targets, more sticks, calls for  more resources and pushes costs up even further.

The lesson from this simple exercise seems clear.

The better strategy for improving quality is to design the root causes of errors out of the processes  because then we will get improved quality and improved delivery and improved productivity and we will discover that we have improved safety as well.  Win-win-win-win.

The Six Dice Game is a simpler version of the famous Red Bead Game that W Edwards Deming used to explain why, in the modern world, the arbitrary-target-driven-command-and-control-stick-and-carrot style of performance management creates more problems than it solves.

The illusion is of short-term gain but the reality is of long-term pain.

And if you would like to see and hear Deming talking about the science of improvement there is a video of him speaking in 1984. He is at the bottom of the page.  Click here.

The F Word

There is an F-word that organisations do not like to use – except maybe in conspiratorial corridor conversations.

What word might that be? What are good candidates for it?

Finance perhaps?

Certainly a word that many people do not want to utter – especially when the financial picture is not looking very rosy. And when the word finance is mentioned in meetings there is usually a groan of anguish. So yes, finance is a good candidate – but it is not the F-word.

Failure maybe?

Yes – definitely a word that is rarely uttered openly. The concept of failure is just not acceptable. Organisations must succeed, sustain and grow. Talk of failure is for losers not for winners. To talk about failure is tempting fate. So yes, another excellent candidate – but it is not the F-word.

OK – what about Fear?

That is definitely something no one likes to admit to.  Especially leaders. They are expected to be fearless. Fear is a sign of weakness! Once you start letting the fear take over then panic starts to set in – then rash decisions follow then you are really on the slippery slope. Your organisation fragments into warring factions and your fate is sealed. That must be the F-word!

Nope.  It is another very worthy candidate but it is not the F-word.


[reveal heading=”Click here to reveal the F-word“]


The dreaded F-word is Feedback.

We do not like feedback.  We do not like asking for it. We do not like giving it. We do not like talking about it. Our systems seem to be specifically designed to exclude it. Potentially useful feedback information is kept secret, confidential, for-our-eyes only.  And if it is shared it is emasculated and anonymized.

And the brave souls who are prepared to grasp the nettle – the 360 Feedback Zealots – are forced to cloak feedback with secrecy and confidentiality. We are expected to ask  for feedback, to take it on the chin, but not to know who or where it came from. So to ease the pain of anonymous feedback we are allowed to choose our accusers. So we choose those who we think will not point out our blindspot. Which renders the whole exercise worthless.

And when we actually want feedback we extract it mercilessly – like extracting blood from a reluctant stone. And if you do not believe me then consider this question: Have you ever been to a training course where your ‘certificate of attendance’ was with-held until you had completed the feedback form? The trainers do this for good reason. We just hate giving feedback. Any feedback. Positive or negative. So if they do not extract it from us before we leave they do not get any.

Unfortunately by extracting feedback from us under coercion is like acquiring a confession under torture – it distorts the message and renders it worthless.

What is the problem here?  What are we scared of?


We all know the answer to the question.  We just do not want to point at the elephant in the room.

We are all terrified of discovering that we have the organisational equivalent of body-odour. Something deeply unpleasant about our behaviour that we are blissfully unaware of but that everyone else can see as plain as day. Our behaviour blindspot. The thing we would cringe with embarrassment about if we knew. We are social animals – not solitary ones. We need on feedback yet we fear it too.

We lack the courage and humility to face our fear so we resort to denial. We avoid feedback like the plague. Feedback becomes the F-word.

But where did we learn this feedback phobia?

Maybe we remember the playground taunts from the Bullies and their Sychophants? From the poisonous Queen-Bees and their Wannabees?  Maybe we tried to protect ourselves with incantations that our well-meaning parents taught us. Spells like “Sticks and stones may break my bones but names will never hurt me“.  But being called names does hurt. Deeply. And it hurts because we are terrified that there might be some truth in the taunt.

Maybe we learned to turn a blind-eye and a deaf-ear; to cross the street at the first sign of trouble; to turn the other cheek? Maybe we just learned to adopt the Victim role? Maybe we were taught to fight back? To win at any cost? Maybe we were not taught how to defuse the school yard psycho-games right at the start?  Maybe our parents and teachers did not know how to teach us? Maybe they did not know themselves?  Maybe the ‘innocent’ schoolyard games are actually much more sinister?  Maybe we carry them with us as habitual behaviours into adult life and into our organisations? And maybe the bullies and Queen-Bees learned something too? Maybe they learned that they could get away with it? Maybe they got to like the Persecutor role and its seductive musk of power? If so then then maybe the very last thing the Bullies and Queen-Bees will want to do is to encourage open, honest feedback – especially about their behaviour. Maybe that is the root cause of the conspiracy of silence? Maybe?

But what is the big deal here?

The ‘big deal’ is that this cultural conspiracy of silence is toxic.  It is toxic to trust. It is toxic to teams. It is toxic to morale.  It is toxic to motivation. It is toxic to innovation. It is toxic to improvement. It is so toxic that it kills organisations – from the inside. Slowly.

Ouch! That feels uncomfortably realistic. So what is the problem again – exactly?

The problem is a deliberate error of omission – the active avoidance of feedback.

So ….. if it were that – how would we prove that is the root cause? Eh?

By correcting the error of omission and then observing what happens.


And this is where it gets dangerous for leaders. They are skating on politically thin ice and they know it.

Subjective feedback is very emotive.  If we ask ten people for their feedback on us we will get ten different replies – because no two people perceive the world (and therefore us) the same way.  So which is ‘right’? Which opinions do we take heed of and which ones do we discount? It is a psycho-socio-political minefield. So no wonder we avoid stepping onto the cultural barbed-wire!

There is an alternative.  Stick to reality and avoid rhetoric. Stick to facts and avoid feelings. Feed back the facts of how the organisational system is behaving to everyone in the organisation.

And the easiest way to do that is with three time-series charts that are updated and shared at regular and frequent intervals.

First – the count of safety and quality failure near-misses for each interval – for at least 50 intervals.

Second – the delivery time of our product or service for each customer over the same time period.

Third – the revenue generated and the cost incurred for each interval for the same 50 intervals.

No ratios, no targets, no balanced scorecard.

Just the three charts that paint the big picture of reality. And it might not be a very pretty picture.

But why at least 50 intervals?

So we can see the long term and short term variation over time. We need both … because …

Our Safety Chart shows that near misses keep happening despite all the burden of inspection and correction.

Our Delivery Chart shows that our performance is distorted by targets and the Horned Gaussian stalks us.

Our Viability Chart shows that our costs are increasing as we pay dearly for past mistakes and our revenue is decreasing as our customers protect their purses and their persons by staying away.

That is the not-so-good news.

The good news is that as soon as we have a multi-dimensional-frequent-feedback loop installed we will start to see improvement. It happens like magic. And the feedback accelerates the improvement.

And the news gets better.

To make best use of this frequent feedback we just need to include in our Constant Purpose – to improve safety, delivery and viability. And then the final step is to link the role of every person in the organisation to that single win-win-win goal. So that everyone can see how they contribute and how their job is worthwhile.

Shared Goals, Clear Roles and Frequent Feedback.

And if you resonate with this message then you will resonate with “The Three Signs of  Miserable Job” by Patrick Lencioni.

And if you want to improve your feedback-ability then a really simple and effective feedback tool is The 4N Chart

And please share your feedback.

[/reveal]

The Three R’s

Processes are like people – they get poorly – sometimes very poorly.

Poorly processes present with symptoms. Symptoms such as criticism, complaints, and even catastrophes.

Poorly processes show signs. Signs such as fear, queues and deficits.

So when a process gets very poorly what do we do?

We follow the Three R’s

1-Resuscitate
2-Review
3-Repair

Resuscitate means to stabilize the process so that it is not getting sicker.

Review means to quickly and accurately diagnose the root cause of the process sickness.

Repair means to make changes that will return the process to a healthy and stable state.

So the concept of ‘stability’ is fundamental and we need to understand what that means in practice.

Stability means ‘predictable within limits’. It is not the same as ‘constant’. Constant is stable but stable is not necessarily constant.

Predictable implies time – so any measure of process health must be presented as time-series data.

We are now getting close to a working definition of stability: “a useful metric of system performance that is predictable within limits over time”.

So what is a ‘useful metric’?

There will be at least three useful metrics for every system: a quality metric, a time metric and a money metric.

Quality is subjective. Money is objective. Time is both.

Time is the one to start with – because it is the easiest to measure.

And if we treat our system as a ‘black box’ then from the outside there are three inter-dependent time-related metrics. These are external process metrics (EPMs) – sometimes called Key Performance Indicators (KPIs).

Flow in – also called demand
Flow out – also called activity
Delivery time – which is the time a task spends inside our system – also called the lead time.

But this is all starting to sound like rather dry, conceptual, academic mumbo-jumbo … so let us add a bit of realism and drama – let us tell this as a story …

[reveal heading=”Click here to reveal the story …“] 


Picture yourself as the manager of a service that is poorly. Very poorly. You are getting a constant barrage of criticism and complaints and the occasional catastrophe. Your service is struggling to meet the required delivery time performance. Your service is struggling to stay in budget – let alone meet future cost improvement targets. Your life is a constant fire-fight and you are getting very tired and depressed. Nothing you try seems to make any difference. You are starting to think that anything is better than this – even unemployment! But you have a family to support and jobs are hard to come by in austere times so jumping is not an option. There is no way out. You feel you are going under. You feel are drowning. You feel terrified and helpless!

In desperation you type “Management fire-fighting” into your web search box and among the list of hits you see “Process Improvement Emergency Service”.  That looks hopeful. The link takes you to a website and a phone number. What have you got to lose? You dial the number.

It rings twice and a calm voice answers.

?“You are through to the Process Improvement Emergency Service – what is the nature of the process emergency?”

“Um – my service feels like it is on fire and I am drowning!”

The calm voice continues in a reassuring tone.

?“OK. Have you got a minute to answer three questions?”

“Yes – just about”.

?“OK. First question: Is your service safe?”

“Yes – for now. We have had some catastrophes but have put in lots of extra safety policies and checks which seems to be working. But they are creating a lot of extra work and pushing up our costs and even then we still have lots of criticism and complaints.”

?“OK. Second question: Is your service financially viable?”

“Yes, but not for long. Last year we just broke even, this year we are projecting a big deficit. The cost of maintaining safety is ‘killing’ us.”

?“OK. Third question: Is your service delivering on time?”

“Mostly but not all of the time, and that is what is causing us the most pain. We keep getting beaten up for missing our targets.  We constantly ask, argue and plead for more capacity and all we get back is ‘that is your problem and your job to fix – there is no more money’. The system feels chaotic. There seems to be no rhyme nor reason to when we have a good day or a bad day. All we can hope to do is to spot the jobs that are about to slip through the net in time; to expedite them; and to just avoid failing the target. We are fire-fighting all of the time and it is not getting better. In fact it feels like it is getting worse. And no one seems to be able to do anything other than blame each other.”

There is a short pause then the calm voice continues.

?“OK. Do not panic. We can help – and you need to do exactly what we say to put the fire out. Are you willing to do that?”

“I do not have any other options! That is why I am calling.”

The calm voice replied without hesitation. 

?“We all always have the option of walking away from the fire. We all need to be prepared to exercise that option at any time. To be able to help then you will need to understand that and you will need to commit to tackling the fire. Are you willing to commit to that?”

You are surprised and strangely reassured by the clarity and confidence of this response and you take a moment to compose yourself.

“I see. Yes, I agree that I do not need to get toasted personally and I understand that you cannot parachute in to rescue me. I do not want to run away from my responsibility – I will tackle the fire.”

?“OK. First we need to know how stable your process is on the delivery time dimension. Do you have historical data on demand, activity and delivery time?”

“Hey! Data is one thing I do have – I am drowning in the stuff! RAG charts that blink at me like evil demons! None of it seems to help though – the more data I get sent the more confused I become!”

?“OK. Do not panic.  The data you need is very specific. We need the start and finish events for the most recent one hundred completed jobs. Do you have that?”

“Yes – I have it right here on a spreadsheet – do I send the data to you to analyse?”

?“There is no need to do that. I will talk you through how to do it.”

“You mean I can do it now?”

?“Yes – it will only take a few minutes.”

“OK, I am ready – I have the spreadsheet open – what do I do?”

?“Step 1. Arrange the start and finish events into two columns with a start and finish event for each task on each row.

You copy and paste the data you need into a new worksheet. 

“OK – done that”.

?“Step 2. Sort the two columns into ascending order using the start event.”

“OK – that is easy”.

?“Step 3. Create a third column and for each row calculate the difference between the start and the finish event for that task. Please label it ‘Lead Time’”.

“OK – do you want me to calculate the average Lead Time next?”

There was a pause. Then the calm voice continued but with a slight tinge of irritation.

?“That will not help. First we need to see if your system is unstable. We need to avoid the Flaw of Averages trap. Please follow the instructions exactly. Are you OK with that?”

This response was a surprise and you are starting to feel a bit confused.    

“Yes – sorry. What is the next step?”

?“Step 4: Plot a graph. Put the Lead Time on the vertical axis and the start time on the horizontal axis”.

“OK – done that.”

?“Step 5: Please describe what you see?”

“Um – it looks to me like a cave full of stalagtites. The top is almost flat, there are some spikes, but the bottom is all jagged.”

?“OK. Step 6: Does the pattern on the left-side and on the right-side look similar?”

“Yes – it does not seem to be rising or falling over time. Do you want me to plot the smoothed average over time or a trend line? They are options on the spreadsheet software. I do that use all the time!”

The calm voice paused then continued with the irritated overtone again.

?“No. There is no value is doing that. Please stay with me here. A linear regression line is meaningless on a time series chart. You may be feeling a bit confused. It is common to feel confused at this point but the fog will clear soon. Are you OK to continue?”

An odd feeling starts to grow in you: a mixture of anger, sadness and excitement. You find yourself muttering “But I spent my own hard-earned cash on that expensive MBA where I learned how to do linear regression and data smoothing because I was told it would be good for my career progression!”

?“I am sorry I did not catch that? Could you repeat it for me?”

“Um – sorry. I was talking to myself. Can we proceed to the next step?”

?”OK. From what you say it sounds as if your process is stable – for now. That is good.  It means that you do not need to Resuscitate your process and we can move to the Review phase and start to look for the cause of the pain. Are you OK to continue?”

An uncomfortable feeling is starting to form – one that you cannot quite put your finger on.

“Yes – please”. 

?Step 7: What is the value of the Lead Time at the ‘cave roof’?”

“Um – about 42”

?“OK – Step 8: What is your delivery time target?”

“42”

?“OK – Step 9: How is your delivery time performance measured?”

“By the percentage of tasks that are delivered late each month. Our target is better than 95%. If we fail any month then we are named-and-shamed at the monthly performance review meeting and we have to explain why and what we are going to do about it. If we succeed then we are spared the ritual humiliation and we are rewarded by watching others else being mauled instead. There is always someone in the firing line and attendance at the meeting is not optional!”

You also wanted to say that the data you submit is not always completely accurate and that you often expedite tasks just to avoid missing the target – in full knowkedge that the work had not been competed to the required standard. But you hold that back. Someone might be listening.

There was a pause. Then the calm voice continued with no hint of surprise. 

?“OK. Step 10. The most likely diagnosis here is a DRAT. You have probably developed a Gaussian Horn that is creating the emotional pain and that is fuelling the fire-fighting. Do not panic. This is a common and curable process illness.”

You look at the clock. The conversation has taken only a few minutes. Your feeling of panic is starting to fade and a sense of relief and curiosity is growing. Who are these people?

“Can you tell me more about a DRAT? I am not familiar with that term.”

?“Yes.  Do you have two minutes to continue the conversation?”

“Yes indeed! You have my complete attention for as long as you need. The emails can wait.”

The calm voice continues.

?“OK. I may need to put you on hold or call you back if another emergency call comes in. Are you OK with that?”

“You mean I am not the only person feeling like this?”

?“You are not the only person feeling like this. The process improvement emergency service, or PIES as we call it, receives dozens of calls like this every day – from organisations of every size and type.”

“Wow! And what is the outcome?”

There was a pause. Then the calm voice continued with an unmistakeable hint of pride.

?“We have a 100% success rate to date – for those who commit. You can look at our performance charts and the client feedback on the website.”

“I certainly will! So can you explain what a DRAT is?” 

And as you ask this you are thinking to yourself ‘I wonder what happened to those who did not commit?’ 

The calm voice interrupts your train of thought with a well-practiced explanation.

?“DRAT stands for Delusional Ratio and Arbitrary Target. It is a very common management reaction to unintended negative outcomes such as customer complaints. The concept of metric-ratios-and-performance-specifications is not wrong; it is just applied indiscriminately. Using DRATs can drive short-term improvements but over a longer time-scale they always make the problem worse.”

One thought is now reverberating in your mind. “I knew that! I just could not explain why I felt so uneasy about how my service was being measured.” And now you have a new feeling growing – anger.  You control the urge to swear and instead you ask:

“And what is a Horned Gaussian?”

The calm voice was expecting this question.

?“It is easier to demonstrate than to explain. Do you still have your spreadsheet open and do you know how to draw a histogram?”

“Yes – what do I need to plot?”

?“Use the Lead Time data and set up ten bins in the range 0 to 50 with equal intervals. Please describe what you see”.

It takes you only a few seconds to do this.  You draw lots of histograms – most of them very colourful but meaningless. No one seems to mind though.

“OK. The histogram shows a sort of heap with a big spike on the right hand side – at 42.”

The calm voice continued – this time with a sense of satisfaction.

?“OK. You are looking at the Horned Gaussian. The hump is the Gaussian and the spike is the Horn. It is a sign that your complex adaptive system behaviour is being distorted by the DRAT. It is the Horn that causes the pain and the perpetual fire-fighting. It is the DRAT that causes the Horn.”

“Is it possible to remove the Horn and put out the fire?”

?“Yes.”

This is what you wanted to hear and you cannot help cutting to the closure question.

“Good. How long does that take and what does it involve?”

The calm voice was clearly expecting this question too.

?“The Gaussian Horn is a non-specific reaction – it is an effect – it is not the cause. To remove it and to ensure it does not come back requires treating the root cause. The DRAT is not the root cause – it is also a knee-jerk reaction to the symptoms – the complaints. Treating the symptoms requires learning how to diagnose the specific root cause of the lead time performance failure. There are many possible contributors to lead time and you need to know which are present because if you get the diagnosis wrong you will make an unwise decision, take the wrong action and exacerbate the problem.”

Something goes ‘click’ in your head and suddently your fog of confusion evaporates. It is like someone just switched a light on.

“Ah Ha! You have just explained why nothing we try seems to work for long – if at all.  How long does it take to learn how to diagnose and treat the specific root causes?”

The calm voice was expecting this question and seemed to switch to the next part of the script.

?“It depends on how committed the learner is and how much unlearning they have to do in the process. Our experience is that it takes a few hours of focussed effort over a few weeks. It is rather like learning any new skill. Guidance, practice and feedback are needed. Just about anyone can learn how to do it – but paradoxically it takes longer for the more experienced and, can I say, cynical managers. We believe they have more unlearning to do.”

You are now feeling a growing sense of urgency and excitement.

“So it is not something we can do now on the phone?”

?“No. This conversation is just the first step.”

You are eager now – sitting forward on the edge of your chair and completely focussed.

“OK. What is the next step?”

There is a pause. You sense that the calm voice is reviewing the conversation and coming to a decision.

?“Before I can answer your question I need to ask you something. I need to ask you how you are feeling.”

That was not the question you expected! You are not used to talking about your feelings – especially to a complete stranger on the phone – yet strangely you do not sense that you are being judged. You have is a growing feeling of trust in the calm voice.

You pause, collect your thoughts and attempt to put your feelings into words. 

“Er – well – a mixture of feelings actually – and they changed over time. First I had a feeling of surprise that this seems so familiar and straightforward to you; then a sense of resistance to the idea that my problem is fixable; and then a sense of confusion because what you have shown me challenges everything I have been taught; and then a feeling distrust that there must be a catch and then a feeling of fear of embarassement if I do not spot the trick. Then when I put my natural skepticism to one side and considered the possibility as real then there was a feeling of anger that I was not taught any of this before; and then a feeling of sadness for the years of wasted time and frustration from battling something I could not explain.  Eventually I started to started to feel that my cherished impossibility belief was being shaken to its roots. And then I felt a growing sense of curiosity, optimism and even excitement that is also tinged with a feeling of fear of disappointment and of having my hopes dashed – again.”

There was a pause – as if the calm voice was digesting this hearty meal of feelings. Then the calm voice stated:

?“You are experiencing the Nerve Curve. It is normal and expected. It is a healthy sign. It means that the healing process has already started. You are part of your system. You feel what it feels – it feels what you do. The sequence of negative feelings: the shock, denial, anger, sadness, depression and fear will subside with time and the positive feelings of confidence, curiosity and excitement will replace them. Do not worry. This is normal and it takes time. I can now suggest the next step.”

You now feel like you have just stepped off an emotional rollercoaster – scary yet exhilarating at the same time. A sense of relief sweeps over you. You have shared your private emotional pain with a stranger on the phone and the world did not end! There is hope.

“What is the next step?”

This time there was no pause.

?“To commit to learning how to diagnose and treat your process illnesses yourself.”

“You mean you do not sell me an expensive training course or send me a sharp-suited expert who will come tell me what to do and charge me a small fortune?”

There is an almost sarcastic tone to your reply that you regret as soon as you have spoken.

Another pause.  An uncomfortably long one this time. You sense the calm voice knows that you know the answer to your own question and is waiting for you to answer it yourself.

You answer your own question.  

“OK. I guess not. Sorry for that. Yes – I am definitely up for learning how! What do I need to do.”

?“Just email us. The address is on the website. We will outline the learning process. It is neither difficult nor expensive.”

The way this reply was delivered – calmly and matter-of-factly – was reassuring but it also promoted a new niggle – a flash of fear.

“How long have I got to learn this?”

This time the calm voice had an unmistakable sense of urgency that sent a cold prickles down your spine.

?”Delay will add no value. You are being stalked by the Horned Gaussian. This means your system is on the edge of a catastrophe cliff. It could tip over any time. You cannot afford to relax. You must maintain all your current defenses. It is a learning-by-doing process. The sooner you start to learn-by-doing the sooner the fire starts to fade and the sooner you move away from the edge of the cliff.”       

“OK – I understand – and I do not know why I did not seek help a long time ago.”

The calm voice replied simply.

?”Many people find seeking help difficult. Especially senior people”.

Sensing that the conversation is coming to an end you feel compelled to ask:

“I am curious. Where do the DRATs come from?”

?“Curiosity is a healthy attitude to nurture. We believe that DRATs originated in finance departments – where they were originally called Fiscal Averages, Ratios and Targets.  At some time in the past they were sucked into operations and governance departments by a knowledge vacuum created by an unintended error of omission.”

You are not quite sure what this unfamiliar language means and you sense that you have strayed outside the scope of the “emergency script” but the phrase ‘error of omission sounds interesting’ and pricks your curiosity. You ask: 

“What was the error of omission?”

?“We believe it was not investing in learning how to design complex adaptive value systems to deliver capable win-win-win performance. Not investing in learning the Science of Improvement.”

“I am not sure I understand everything you have said.”

?“That is OK. Do not worry. You will. We look forward to your email.  My name is Bob by the way.”

“Thank you so much Bob. I feel better just having talked to someone who understands what I am going through and I am grateful to learn that there is a way out of this dark pit of despair. I will look at the website and send the email immediately.”

?”I am happy to have been of assistance.”

[/reveal]

Systems within Systems

Each of us is a small part of a big system.  Each of us is a big system made of smaller parts. The concept of a system is the same at all scales – it is called scale invariant

When we put a system under a microscope we see parts that are also systems. And when we zoom in on those we see their parts are also systems. And if we look outwards with a telescope we see that we are part of a bigger system which in turn is part of an even bigger system.

This concept of systems-within-systems has a down-side and an up-side.

The down-side is that it quickly becomes impossible to create a mental picture of the whole system-of-systems. Our caveman brains are just not up to the job. So we just focus our impressive-but-limited cognitive capacity on the bit that affects us most. The immediate day-to-day people-and-process here-and-now stuff. And we ignore the ‘rest’. We deliberately become ignorant – and for good reason. We do not ask about the ‘rest’ because we do not want to know because we cannot comprehend the complexity. We create cognitive comfort zones and personal silos.

And we stay inside our comfort zones and we hide inside our silos.


Unfortunately – ignoring the ‘rest’ does not make it go away.

We are part of a system – we are affected by it and it is affected by us. That is how systems work.


The up-side is that all systems behave in much the same way – irrespective of the level.  This is very handy because if we can master a method for understanding and improving a system at one level – then we can use the same method at any level.  The only change is the degree of detail. We can chunk up and down and still use the same method.  

The improvement scientist needs to be a master of one method and to be aware of three levels: the system level, the stream level and the step level.

The system provides the context for the streams. The steps provide the content of the streams.

  1. Direction operates at the system level.
  2. Delivery operates at the stream level.
  3. Doing operates at the step level.

So an effective and efficient improvement science method must work at all three levels – and one method that has been demonstrated to do that is called 6M Design®.


6M Design® is not the only improvement science method, and it is not intended to be the best. Being the best is not the purpose because it is not necessary. Having better than what we had before is the purpose because it is sufficient. That is improvement.


6M Design® works at all three levels.  It is sufficient for system-wide and system-deep improvement. So that is what I use.


The first M stands for Map.

Maps are designed to be visual and two-dimensional because that is how our Mark-I eyeballs abd visual sensory systems work. Our caveman brains are good at using pictures and in extraction meaning from the detail. It is a survival skill. 

All real systems have a lot more than two dimensions. Safety, Quality, Flow and Cost are four dimensions to start with, and there are many more. So we need lots of maps. Each one looking at just two of the dimensions.  It is our set of maps that provide us with a multi-dimensional picture of the system we want to improve.

One dimension features more often in the maps than any other – and that dimension is time.

The Western cultural convention is to put time on the horizonal axis with past in the left and future on the right. Left-to-right means looking forward in time.  Right-to-left means looking backwards in time. 


We have already seen one of the time-dependent maps – The 4N Chart®.

It is a Emotion-Time map. How do we feel now and why? What do we want to feel in the futrure and why? It is a status-at-a-glance map. A static map. A snapshot.

The emotional roller coaster of change – the Nerve Curve – is an Emotion-Time map too. It is a dynamic map – an expected trajectory map.  The emotional ups and downs that we expect to encounter when we engage in significant change.

Change usually involves several threads at the same time – each with its own Nerve Curve. 

The 4N Charts® are snapshots of all the parallel threads of change – they evolve over time – they are our day-to-day status-at-a-glance maps – and they guide us to which Nerve Curve to pay attention to next and what to do. 

The map that links the three – the purposes, the pathways and the parts – is the map that underpins 6M Design®. A map that most people are not familiar with because it represents a counter-intuitive way of thinking.

And it is that critical-to-success map which differentiates innovative design from incremental improvement.

And using that map can be learned quite quickly – if you have a guide – an Improvement Scientist.

The Four Parts of Purpose

Mission Statements are often ridiculed and discounted by the very people they are designed for.

Their intention appears positive yet they often seem ineffective and even counter-productive.

Why is that?

In essence the Mission Statement is a declaration of the organisations purpose and provides a context for the formulation of strategy.  Very often they are ambiguous, emotive and sort of yingy-yangy. More marketing gimmick than management goal.

The output of Improvement Science is a system designed to deliver its value purpose. So a clear and realistic purpose is the first requirement for an effective system design.

For example: 

Global Fast Food Inc – “To provide fast-food prepared in the same high-quality manner world-wide that is tasty, reasonably-priced and delivered consistently in a low-key décor and friendly atmosphere.”

This is a clear purpose specification – and it has all the Three Wins® design elements of quality, delivery and money. It is necessary but it is not yet sufficient.

What is missing?


First we need to be clear what a poor purpose statement design looks like. They contain the word “best”.  They are poor designs because just using the word “best” makes them aspirations not specifications. Dreams rather than deliverables.  Only one organisation can actually be “the best” so adopting impossible purpose condemns the majority of organisations to failure-to-achieve-their-purpose. And everyone in the organisation knows that. So they give up emotionally at the start. They know that achieving the stated purpose is impossible.

Not having a Statement of Purpose (SoP) at all is even worse because the message this broadcasts is that the organisation cannot articulate its purpose – its reason for existing – where it derives its sense of value and worth. Purposeless organisations are chaotic and demotivating places to work in because the emotional vacuum is filled with something much more toxic – organisational politics.

So we do need some form of Statement of Purpose and one reason that the what-we-will-do design feels incomplete is because it only covers a quarter of the requirements for a system purpose specification. And it is the missing three-quarters that causes the problems. They are difficult to articulate but we can feel the gap that we cannot see.


A statement of purpose is a cultural contract – is operates at the people and psychological level – not at the legal level. It is a collective pledge.  It is a statement of expectation.

So when observed behaviour falls short of expected behaviour then disappointment and anger results. After that comes sadness – for the loss of hope – then fear of what the failure implies and what will come next. Fear of the rhetoric-reality mismatch; the small white lies that feed on fear and grow into the big fat porkie-pies; the secrecy and hoarding of knowledge; the hidden agendas; and the behind-closed door wheeling and dealing; the fait accomplis and the handed down JFDI Policies. All untrustworthy behaviours. And all blindingly obvious to everyone. Trust is eroded, optimism turns to skepticism and then cynicism. The toxic emotional swamp deepens.  Who would want to invest their lifetime there? The savvy sensitive ones escape. The emotionally thick-skinned species of employee survive.  A few noisy idealists may stay out of a misplaced sense of loyality but usually even they fall silent as the toxic swamp overwhelmes them. Not a very rosy picture is it?

So what does a full Statement of Purpose look like?

Firstly there are two Acts:

1. The Acts of Commission – the things that we say we will commit to do.
2. The Acts of Omission – the things that we say we will commit NOT to do.

Both are required.

These are made explicit using a Pledge.  The pledge is the output if a formal design exercise – like a blueprint. 

Secondly there are the two Defences against Errors.  These are made explicit using a Plan. It too requires design.


When we fail to deliver on our commitments as individuals (and we all do because we are all human) then we make two different types of error. I- the Error of Commission or II – the Error of Omission. 

The Error of Commission is when we do the wrong thing (or we try to do the right thing but do it wrong). The first is failure of efficacy the second is failure of effectiveness.  So first we need to be able to decide what is the right thing and then we need the capability to deliver it right. For that we need to know what to do and how to do it.  We need both knowledge and understanding. We need to know what and why.

Errors erode trust. And one of the commonest errors of commission is to assume ineffectiveness (or inefficiency) when the actual cause is poor strategic decisions. The effect of this error is to add more and more bureaucracy. Checking that we have done what we should and done it right. Inspection-and-Correction, Supervision-and-Surveillance, Audits-and-Reports.  Waiting for a failure and then sniffing like hounds up the trail of spilt blood and breadcrumbs. Right back to the individual who committed the sinof commission and then to expose and punish them. To weed out the bad apples in the barrel.  Bureaucracy is not the solution – it is the symptom of poor strategic decisions. 

And some people are naturally drawn to the Inspection, Supervision and Protection roles – the ISP functions – because their temperaments are suited to it.  And that is OK so long as the Purpose is valid.  When the Purpose is invalid the ISP army will enforce an ineffective strategic plan and the problem will be magnified. Invalid purposes are a symptom of a lack of collective strategic wisdom – which is why the design of the  Statement of Purpose is critical to long term success. 


The world is always changing – so even when the Purpose is valid and does not change – what was a well designed Policy a decade ago may easily be a poor design of Policy now.  But the role of the Inspectors, Supervisors and Protectors is to maintain stability – and that is good. We need that. The danger comes silently and slowly as the Reality changes and the Rhetoric does not. The ISP army grows, the bureaucracy and bullying grows, and the costs escalate. The mismatch is exposed eventually – there is a crisis – often of catastrophic proportions. The longer the delay the bigger the catastrophe. And the bigger the catastrophe the more people get caught in the cross-fire.

So the fourth part is the Defence against Errors of Omission.

An Error of Omission is when we do not do something that we should have.  When we did not say “That is not OK” when we could clearly see that something was not OK. The Error of Omission is the more dangerous error because it is invisible. There is nothing to see. There is no blood or breadcrumb trail for the faithful hounds to follow. There is no evidence trail leading to the bad outcome so the hounds follow any trail that they find and either scapegoat the wrong person or go around in circles and eventually conclude “it was a system problem”. They are correct. It is. A system design problem.

The individual errors of omission are bad enough – the collective errors of omission are worse.

And they are driven by two forces.  Ignorance and Fear.

160 years ago in Vienna the doctors did not know that not washing their hands when entering the labour ward was an Error of Omission. They were ignorant of the fact.  And as a result hundreds of young women and their new babies died of Childbed Fever. The people knew this and it is said that husbands would rather their wives give birth on the street than go to hospital when the doctors were on duty for the day. At its worse the death rate was 30% per month! Now we do know that to not disinfect our hands between patients is an error of omission and we understand the reason – we understand how we unintentionally spread invisible germs on our hands.

Knowledge is the antidote to ignorance and knowledge needs to be shared to be effective – because we are all ignorant until educated. And we are ignorant of our ignorance. We do not now what we do not know. Tackling our ignorance requires humility. The willingness to expose our own knowledge gaps. The willingness to learn – continuously – because reality is always evolving.  

The more usual driver of the collective error of omission is fear.  Fear of persecution if we break ranks and make ourselves conspicuous by saying “This is not OK”.  And the people who perscute us the most are our peers. Their collective fear of their own failures of purpose creates a much greater emotional barrier than the fear of an autocratic ISP bully. We also fear the mob. The dangerously unpredictable blinded-by-anger mob that becomes collectively enraged by their loss of trust and who stone-to-death anything that resembles the threat.

We fear and we turn away so we cannot see; we cover our ears so we cannot hear; and we say and do nothing. That is the Collective Error of Omission.

What then is the way forward?


Fill in the missing pieces.

Ensure that our Statement of Purpose has Four Parts.

 

1. What we will do and why. The Intended Acts of Commission.

2. What we will not do and why. The Intended Acts of Omission.

3. How we will know we have made an Error of Commission. The Defence against Type I Errors. 

4. How we will know we have made an Error of Omission. The Defence against Type II Errors.

The Acts are designs for Trust, the Defences are designs for Feedback – the two essential components of an effective value system design.

A Recipe for Improvement PIE.

Most of us are realists. We have to solve problems in the real world so we prefer real examples and step-by-step how-to-do recipes.

A minority of us are theorists and are more comfortable with abstract models and solving rhetorical problems.

Many of these Improvement Science blog articles debate abstract concepts – because I am a strong iNtuitor by nature. Most realists are Sensors – so by popular request here is a “how-to-do” recipe for a Productivity Improvement Exercise (PIE)

Step 1 – Define Productivity.

There are many definitions we could choose because productivity means the results delivered divided by the resources used.  We could use any of the three currencies – quality, time or money – but the easiest is money. And that is because it is easier to measure and we have well established department for doing it – Finance – the guardians of the money.  There are two other departments who may need to be involved – Governance (the guardians of the safety) and Operations (the guardians of the delivery).

So the definition we will use is productivity = revenue generated divided cost incurred.

Step 2 – Draw a map of the process we want to make more productive.

This means creating a picture of the parts and their relationships to each other – in particular what the steps in the process are; who does what, where and when; what is done in parallel and what is done in sequence; what feeds into what and what depends on what. The output of this step is a diagram with boxes and arrows and annotations – called a process map. It tells us at a glance how complex our process is – the number of boxes and the number of arrows.  The simpler the process the easier it is to demonstrate a productivity improvement quickly and unambiguously.

Step 3 – Decide the objective metrics that will tell us our productivity.

We have chosen a finanical measure of productivity so we need to measure revenue and cost over time – and our Finance department do that already so we do not need to do anything new. We just ask them for the data. It will probably come as a monthly report because that is how Finance processes are designed – the calendar month accounting cycle is not negotiable.

We will also need some internal process metrics (IPMs) that will link to the end of month productivity report values because we need to be observing our process more often than monthly. Weekly, daily or even task-by-task may be necessary – and our monthly finance reports will not meet that time-granularity requirement.

These internal process metrics will be time metrics.

Start with objective metrics and avoid the subjective ones at this stage. They are necessary but they come later.

Step 4 – Measure the process.

There are three essential measures we usually need for each step in the process: A measure of quality, a measure of time and a measure of cost.  For the purposes of this example we will simplify by making three assumptions. Quality is 100% (no mistakes) and Predictability is 100% (no variation) and Necessity is 100% (no worthless steps). This means that we are considering a simplified and theoretical situation but we are novices and we need to start with the wood and not get lost in the trees.

The 100% Quality means that we do not need to worry about Governance for the purposes of this basic recipe.

The 100% Predictability means that we can use averages – so long as we are careful.

The 100% Necessity means that we must have all the steps in there or the process will not work.

The best way to measure the process is to observe it and record the events as they happen. There is no place for rhetoric here. Only reality is acceptable. And avoid computers getting in the way of the measurement. The place for computers is to assist the analysis – and only later may they be used to assist the maintenance – after the improvement has been achieved.

Many attempts at productivity improvement fail at this point – because there is a strong belief that the more computers we add the better. Experience shows the opposite is usually the case – adding computers adds complexity, cost and the opportunity for errors – so beware.

Step 5 – Identify the Constraint Step.

The meaning of the term constraint in this context is very specific – it means the step that controls the flow in the whole process.  The critical word here is flow. We need to identify the current flow constraint.

A tap or valve on a pipe is a good example of a flow constraint – we adjust the tap to control the flow in the whole pipe. It makes no difference how long or fat the pipe is or where the tap is, begining, middle or end. (So long as the pipe is not too long or too narrow or the fluid too gloopy because if they are then the pipe will become the flow constraint and we do not want that).

The way to identify the constraint in the system is to look at the time measurements. The step that shows the same flow as the output is the constraint step. (And remember we are using the simplified example of no errors and no variation – in real life there is a bit more to identifying the constraint step).

Step 6 – Identify the ideal place for the Constraint Step.

This is the critical-to-success step in the PIE recipe. Get this wrong and it will not work.

This step requires two pieces of measurement data for each step – the time data and the cost data. So the Operational team and the Finance team will need to collaborate here. Tricky I know but if we want improved productivity then there is no alternative.

Lots of productivity improvement initiatives fall at the Sixth Fence – so beware.  If our Finance and Operations departments are at war then we should not consider even starting the race. It will only make the bad situation even worse!

If they are able to maintain an adult and respectful face-to-face conversation then we can proceed.

The time measure for each step we need is called the cycle time – which is the time interval from starting one task to being ready to start the next one. Please note this is a precise definition and it should be used exactly as defined.

The money measure for each step we need is the fully absorbed cost of time of providing the resource.  Your Finance department will understand that – they are Masters of FACTs!

The magic number we need to identify the Ideal Constraint is the product of the Cycle Time and the FACT – the step with the highest magic number should be the constraint step. It should control the flow in the whole process. (In reality there is a bit more to it than this but I am trying hard to stay out of the trees).

Step 7 – Design the capacity so that the Ideal Constraint is the Actual Constraint.

We are using a precise definition of the term capacity here – the amount of resource-time available – not just the number of resources available. Again this is a precise definition and should be used as defined.

The capacity design sequence  means adding and removing capacity to and from steps so that the constraint moves to where we want it.

The sequence  is:
7a) Set the capacity of the Ideal Constraint so it is capable of delivering the required activity and revenue.
7b) Increase the capacity of the all the other steps so that the Ideal Constraint actually controls the flow.
7c) Reduce the capacity of each step in turn, a click at a time until it becomes the constraint then back off one click.

Step 8 – Model your whole design to predict the expected productivity improvement.

This is critical because we are not interested in suck-it-and-see incremental improvement. We need to be able to decide if the expected benefit is worth the effort before we authorise and action any changes.  And we will be asked for a business case. That necessity is not negotiable either.

Lots of productivity improvement projects try to dodge this particularly thorny fence behind a smoke screen of a plausible looking business case that is more fiction than fact. This happens when any of Steps 2 to 7 are omitted or done incorrectly.  What we need here is a model and if we are not prepared to learn how to build one then we should not start. It may only need a simple model – but it will need one. Intuition is too unreliable.

A model is defined as a simplified representation of reality used for making predictions.

All models are approximations of reality. That is OK.

The art of modeling is to define the questions the model needs to be designed to answer (and the precision and accuracy needed) and then design, build and test the model so that it is just simple enough and no simpler. Adding unnecessary complexity is difficult, time consuming, error prone and expensive. Using a computer model when a simple pen-and-paper model would suffice is a good example of over-complicating the recipe!

Many productivity improvement projects that get this far still fall at this fence.  There is a belief that modeling can only be done by Marvins with brains the size of planets. This is incorrect.  There is also a belief that just using a spreadsheet or modelling software is all that is needed. This is incorrect too. Competent modelling requires tools and training – and experience because it is as much art as science.

Step 9 – Modify your system as per the tested design.

Once you have demonstrated how the proposed design will deliver a valuable increase in productivity then get on with it.

Not by imposing it as a fait accompli – but by sharing the story along with the rationale, real data, explanation and results. Ask for balanced, reasoned and respectful feedback. The question to ask is “Can you think of any reasons why this would not work?” Very often the reply is “It all looks OK in theory but I bet it won’t work in practice but I can’t explain why”. This is an emotional reaction which may have some basis in fact. It may also just be habitual skepticism/cynicism. Further debate is usually  worthless – the only way to know for sure is by doing the experiment. As an experiment – as a small-scale and time-limited pilot. Set the date and do it. Waiting and debating will add no value. The proof of the pie is in the eating.

Step 10 – Measure and maintain your system productivity.

Keep measuring the same metrics that you need to calculate productivity and in addition monitor the old constraint step and the new constraint steps like a hawk – capturing their time metrics for every task – and tracking what you see against what the model predicted you should see.

The correct tool to use here is a system behaviour chart for each constraint metric.  The before-the-change data is the baseline from which improvement is measured over time;  and with a dot plotted for each task in real time and made visible to all the stakeholders. This is the voice of the process (VoP).

A review after three months with a retrospective financial analysis will not be enough. The feedback needs to be immediate. The voice of the process will dictate if and when to celebrate. (There is a bit more to this step too and the trees are clamoring for attention but we must stay out of the wood a bit longer).

And after the charts-on-the-wall have revealed the expected improvement has actually happened; and after the skeptics have deleted their ‘we told you so’ emails; and after the cynics have slunk off to sulk; and after the celebration party is over; and after the fame and glory has been snatched by the non-participants – after all of that expected change management stuff has happened …. there is a bit more work to do.

And that is to establish the new higher productivity design as business-as-usual which means tearing up all the old policies and writing new ones: New Policies that capture the New Reality. Bin the out-of-date rubbish.

This is an essential step because culture changes slowly.  If this step is omitted then out-of-date beliefs, attitudes, habits and behaviours will start to diffuse back in, poison the pond, and undo all the good work.  The New Policies are the reference – but they alone will not ensure the improvement is maintained. What is also needed is a PFL – a performance feedback loop.

And we have already demonstrated what that needs to be – the tactical system behaviour charts for the Intended Constraint step.

The finanical productivity metric is the strategic output and is reported monthly – as a system behaviour chart! Just comparing this month with last month is meaningless.  The tactical SBCs for the constraint step must be maintained continuously by the people who own the constraint step – because they control the productivity of the whole process.  They are the guardians of the productivity improvement and their SBCs are the Early Warning System (EWS).

If the tactical SBCs set off an alarm then investigate the root cause immediately – and address it. If they do not then leave it alone and do not meddle.

This is the simplified version of the recipe. The essential framework.

Reality is messier. More complicated. More fun!

Reality throws in lots of rusty spanners so we do also need to understand how to manage the complexity; the unnecessary steps; the errors; the meddlers; and the inevitable variation.  It is possible (though not trivial) to design real systems to deliver much higher productivity by using the framework above and by mastering a number of other tools and techniques.  And for that to succeed the Governance, Operations and Finance functions need to collaborate closely with the People and the Process – initially with guidance from an experienced and competent Improvement Scientist. But only initially. This is a learnable skill. And it takes practice to master – so start with easy ones and work up.

If any of these bits are missing or are dysfunctional the recipe will not work. So that is the first nettle the Executive must grasp. Get everyone who is necessary on the same bus going in the same direction – and show the cynics the exit. Skeptics are OK – they will counter-balance the Optimists. Cynics add no value and are a liability.

What you may have noticed is that 8 of the 10 steps happen before any change is made. 80% of the effort is in the design – only 20% is in the doing.

If we get the design wrong the the doing will be an ineffective and inefficient waste of effort, time and money.


The best complement to real Improvement PIE is a FISH course.


The First Step Looks The Steepest

Getting started on improvement is not easy.

It feels like we have to push a lot to get anywhere and when we stop pushing everything just goes back to where it was before and all our effort was for nothing.

And it is easy to become despondent.  It is easy to start to believe that improvement is impossible. It is easy to give up. It is not easy to keep going.


One common reason for early failure is that we often start by  trying to improve something that we have little control over. Which is natural because many of the things that niggle us are not of our making.

But not all Niggles are like that; there are also many Niggles over which we have almost complete control.

It is these close-to-home Niggles that we need to start with – and that is surprisingly difficult too – because it requires a bit of time-investment.


The commonest reason for not investing time in improvement is: “I am too busy.”

Q: Too busy doing what – specifically?

This simple question is  a  good place to start because just setting aside a few minutes each day to reflect on where we have been spending our time is a worthwhile task.

And the output of our self-reflection is usually surprising.

We waste lifetime every day doing worthless work.

Then we complain that we are too busy to do the worthwhile stuff.

Q: So what are we scared of? Facing up to the uncomfortable reality of knowing how much lifetime we have wasted already?

We cannot change the past. We can only influence the future. So we need to learn from the past to make wiser choices.


Lifetime is odd stuff.  It both is and is not like money.

We can waste lifetime and we can waste money. In that  respect they are the same. Money we do not use today we can save for tomorrow, but lifetime not used today is gone forever.

We know this, so we have learned to use up every last drop of lifetime – we have learned to keep ourselves busy.

And if we are always busy then any improvement will involve a trade-off: dis-investing and re-investing our lifetime. This implies the return on our lifetime re-investment must come quickly and predictably – or we give up.


One tried-and-tested strategy is to start small and then to re-invest our time dividend in the next cycle of improvement.  An if we make wise re-investment choices, the benefit will grow exponentially.

Successful entrepreneurs do not make it big overnight.

If we examine their life stories we will find a repeating cycle of bigger and bigger business improvement cycles.

The first thing successful entrepreneurs learn is how to make any investment lead to a return – consistently. It is not luck.  They practice with small stuff until they can do it reliably.

Successful entrepreneurs are disciplined and they only take calculated risks.

Unsuccessful entrepreneurs are more numerous and they have a different approach.

They are the get-rich-quick brigade. The undisciplined gamblers. And the Laws of Probability ensure that they all will fail eventually.

Sustained success is not by chance, it is by design.

The same is true for improvement.  The skill to learn is how to spot an opportunity to release some valuable time resource by nailing a time-sapping-niggle; and then to reinvest that time in the next most promising cycle of improvement  – consistently and reliably.  It requires discipline and learning to use some novel tools and techniques.

This is where Improvement Science helps – because the tools and techniques apply to any improvement. Safety. Flow. Quality. Productivity. Stability. Reliability.

In a nutshell … trustworthy.


The first step looks the steepest because the effort required feels high and the benefit gained looks small.  But it is climbing the first step that separates the successful from the unsuccessful. And successful people are self-disciplined people.

After a few invest-release-reinvest cycles the amount of time released exceeds the amount needed to reinvest. It is then we have time to spare – and we can do what we choose with that.

Ask any successful athlete or entrepreneur – they keep doing it long after they need to – just for the “rush” it gives them.


The tool I use, because it is quick, easy and effective, is called The 4N Chart®.  And it has a helpful assistant called a Niggle-o-Gram®.   Together they work like a focusing lens – they show where the most fertile opportunity for improvement is – the best return on an investment of time and effort.

And when we have proved to yourself that the first step of improvement is not as steep as you believed – then we have released some time to re-invest in the next cycle of improvement – and in sharing what we have discovered.

That is where the big return comes from.

10/11/2012: Feedback from people who have used The 4N Chart and Niggle-o-Gram for personal development is overwhelmingly positive.

Look Out For The Time Trap!

There is a common system ailment which every Improvement Scientist needs to know how to manage.

In fact, it is probably the commonest.

The Symptoms: Disappointingly long waiting times and all resources running flat out.

The Diagnosis?  90%+ of managers say “It is obvious – lack of capacity!”.

The Treatment? 90%+ of managers say “It is obvious – more capacity!!”

Intuitively obvious maybe – but unfortunately these are incorrect answers. Which implies that 90%+ of managers do not understand how their systems work. That is a bit of a worry.  Lament not though – misunderstanding is a treatable symptom of an endemic system disease called agnosia (=not knowing).

The correct answer is “I do not yet have enough information to make a diagnosis“.

This answer is more helpful than it looks because it prompts four other questions:

Q1. “What other possible system diagnoses are there that could cause this pattern of symptoms?”
Q2. “What do I need to know to distinguish these system diagnoses?”
Q3. “How would I treat the different ones?”
Q4. “What is the risk of making the wrong system diagnosis and applying the wrong treatment?”


Before we start on this list we need to set out a few ground rules that will protect us from more intuitive errors (see last week).

The first Rule is this:

Rule #1: Data without context is meaningless.

For example 130  is a number – it is data. 130 what? 130 mmHg. Ah ha! The “mmHg” is the units – it means millimetres of mercury and it tells us this data is a pressure. But what, where, when,who, how and why? We need more context.

“The systolic blood pressure measured in the left arm of Joe Bloggs, a 52 year old male, using an Omron M2 oscillometric manometer on Saturday 20th October 2012 at 09:00 is 130 mmHg”.

The extra context makes the data much more informative. The data has become information.

To understand what the information actually means requires some prior knowledge. We need to know what “systolic” means and what an “oscillometric manometer” is and the relevance of the “52 year old male”.  This ability to extract meaning from information has two parts – the ability to recognise the language – the syntax; and the ability to understand the concepts that the words are just labels for; the semantics.

To use this deeper understanding to make a wise decision to do something (or not) requires something else. Exploring that would  distract us from our current purpose. The point is made.

Rule #1: Data without context is meaningless.

In fact it is worse than meaningless – it is dangerous. And it is dangerous because when the context is missing we rarely stop and ask for it – we rush ahead and fill the context gaps with assumptions. We fill the context gaps with beliefs, prejudices, gossip, intuitive leaps, and sometimes even plain guesses.

This is dangerous – because the same data in a different context may have a completely different meaning.

To illustrate.  If we change one word in the context – if we change “systolic” to “diastolic” then the whole meaning changes from one of likely normality that probably needs no action; to one of serious abnormality that definitely does.  If we missed that critical word out then we are in danger of assuming that the data is systolic blood pressure – because that is the most likely given the number.  And we run the risk of missing a common, potentially fatal and completely treatable disease called Stage 2 hypertension.

There is a second rule that we must always apply when using data from systems. It is this:

Rule #2: Plot time-series data as a chart – a system behaviour chart (SBC).

The reason for the second rule is because the first question we always ask about any system must be “Is our system stable?”

Q: What do we mean by the word “stable”? What is the concept that this word is a label for?

A: Stable means predictable-within-limits.

Q: What limits?

A: The limits of natural variation over time.

Q: What does that mean?

A: Let me show you.

Joe Bloggs is disciplined. He measures his blood pressure almost every day and he plots the data on a chart together with some context .  The chart shows that his systolic blood pressure is stable. That does not mean that it is constant – it does vary from day to day. But over time a pattern emerges from which Joe Bloggs can see that, based on past behaviour, there is a range within which future behaviour is predicted to fall.  And Joe Bloggs has drawn these limits on his chart as two red lines and he has called them expectation lines. These are the limits of natural variation over time of his systolic blood pressure.

If one day he measured his blood pressure and it fell outside that expectation range  then he would say “I didn’t expect that!” and he could investigate further. Perhaps he made an error in the measurement? Perhaps something else has changed that could explain the unexpected result. Perhaps it is higher than expected because he is under a lot of emotional stress a work? Perhaps it is lower than expected because he is relaxing on holiday?

His chart does not tell him the cause – it just flags when to ask more “What might have caused that?” questions.

If you arrive at a hospital in an ambulance as an emergency then the first two questions the emergency care team will need to know the answer to are “How sick are you?” and “How stable are you?”. If you are sick and getting sicker then the first task is to stabilise you, and that process is called resuscitation.  There is no time to waste.


So how is all this relevant to the common pattern of symptoms from our sick system: disappointingly long waiting times and resources running flat out?

Using Rule#1 and Rule#2:  To start to establish the diagnosis we need to add the context to the data and then plot our waiting time information as a time series chart and ask the “Is our system stable?” question.

Suppose we do that and this is what we see. The context is that we are measuring the Referral-to-Treatment Time (RTT) for consecutive patients referred to a single service called X. We only know the actual RTT when the treatment happens and we want to be able to set the expectation for new patients when they are referred  – because we know that if patients know what to expect then they are less likely to be disappointed – so we plot our retrospective RTT information in the order of referral.  With the Mark I Eyeball Test (i.e. look at the chart) we form the subjective impression that our system is stable. It is delivering a predictable-within-limits RTT with an average of about 15 weeks and an expected range of about 10 to 20 weeks.

So far so good.

Unfortunately, the purchaser of our service has set a maximum limit for RTT of 18 weeks – a key performance indicator (KPI) target – and they have decided to “motivate” us by withholding payment for every patient that we do not deliver on time. We can now see from our chart that failures to meet the RTT target are expected, so to avoid the inevitable loss of income we have to come up with an improvement plan. Our jobs will depend on it!

Now we have a problem – because when we look at the resources that are delivering the service they are running flat out – 100% utilisation. They have no spare flow-capacity to do the extra work needed to reduce the waiting list. Efficiency drives and exhortation have got us this far but cannot take us any further. We conclude that our only option is “more capacity”. But we cannot afford it because we are operating very close to the edge. We are a not-for-profit organisation. The budgets are tight as a tick. Every penny is being spent. So spending more here will mean spending less somewhere else. And that will cause a big argument.

So the only obvious option left to us is to change the system – and the easiest thing to do is to monitor the waiting time closely on a patient-by-patient basis and if any patient starts to get close to the RTT Target then we bump them up the list so that they get priority. Obvious!

WARNING: We are now treating the symptoms before we have diagnosed the underlying disease!

In medicine that is a dangerous strategy.  Symptoms are often not-specific.  Different diseases can cause the same symptoms.  An early morning headache can be caused by a hangover after a long night on the town – it can also (much less commonly) be caused by a brain tumour. The risks are different and the treatment is different. Get that diagnosis wrong and disappointment will follow.  Do I need a hole in the head or will a paracetamol be enough?


Back to our list of questions.

What else can cause the same pattern of symptoms of a stable and disappointingly long waiting time and resources running at 100% utilisation?

There are several other process diseases that cause this symptom pattern and none of them are caused by lack of capacity.

Which is annoying because it challenges our assumption that this pattern is always caused by lack of capacity. Yes – that can sometimes be the cause – but not always.

But before we explore what these other system diseases are we need to understand why our current belief is so entrenched.

One reason is because we have learned, from experience, that if we throw flow-capacity at the problem then the waiting time will come down. When we do “waiting list initiatives” for example.  So if adding flow-capacity reduces the waiting time then the cause must be lack of capacity? Intuitively obvious.

Intuitively obvious it may be – but incorrect too.  We have been tricked again. This is flawed causal logic. It is called the illusion of causality.

To illustrate. If a patient complains of a headache and we give them paracetamol then the headache will usually get better.  That does not mean that the cause of headaches is a paracetamol deficiency.  The headache could be caused by lots of things and the response to treatment does not reliably tell us which possible cause is the actual cause. And by suppressing the symptoms we run the risk of missing the actual diagnosis while at the same time deluding ourselves that we are doing a good job.

If a system complains of  long waiting times and we add flow-capacity then the long waiting time will usually get better. That does not mean that the cause of long waiting time is lack of flow-capacity.  The long waiting time could be caused by lots of things. The response to treatment does not reliably tell us which possible cause is the actual cause – so by suppressing the symptoms we run the risk of missing the diagnosis while at the same time deluding ourselves that we are doing a good job.

The similarity is not a co-incidence. All systems behave in similar ways. Similar counter-intuitive ways.


So what other system diseases can cause a stable and disappointingly long waiting time and high resource utilisation?

The commonest system disease that is associated with these symptoms is a time trap – and they have nothing to do with capacity or flow.

They are part of the operational policy design of the system. And we actually design time traps into our systems deliberately! Oops!

We create a time trap when we deliberately delay doing something that we could do immediately – perhaps to give the impression that we are very busy or even overworked!  We create a time trap whenever we deferring until later something we could do today.

If the task does not seem important or urgent for us then it is a candidate for delaying with a time trap.

Unfortunately it may be very important and urgent for someone else – and a delay could be expensive for them.

Creating time traps gives us a sense of power – and it is for that reason they are much loved by bureaucrats.

To illustrate how time traps cause these symptoms consider the following scenario:

Suppose I have just enough resource-capacity to keep up with demand and flow is smooth and fault-free.  My resources are 100% utilised;  the flow-in equals the flow-out; and my waiting time is stable.  If I then add a time trap to my design then the waiting time will increase but over the long term nothing else will change: the flow-in,  the flow-out,  the resource-capacity, the cost and the utilisation of the resources will all remain stable.  I have increased waiting time without adding or removing capacity. So lack of resource-capacity is not always the cause of a longer waiting time.

This new insight creates a new problem; a BIG problem.

Suppose we are measuring flow-in (demand) and flow-out (activity) and time from-start-to-finish (lead time) and the resource usage (utilisation) and we are obeying Rule#1 and Rule#2 and plotting our data with its context as system behaviour charts.  If we have a time trap in our system then none of these charts will tell us that a time-trap is the cause of a longer-than-necessary lead time.

Aw Shucks!

And that is the primary reason why most systems are infested with time traps. The commonly reported performance metrics we use do not tell us that they are there.  We cannot improve what we cannot see.

Well actually the system behaviour charts do hold the clues we need – but we need to understand how systems work in order to know how to use the charts to make the time trap diagnosis.

Q: Why bother though?

A: Simple. It costs nothing to remove a time trap.  We just design it out of the process. Our flow-in will stay the same; our flow-out will stay the same; the capacity we need will stay the same; the cost will stay the same; the revenue will stay the same but the lead-time will fall.

Q: So how does that help me reduce my costs? That is what I’m being nailed to the floor with as well!

A: If a second process requires the output of the process that has a hidden time trap then the cost of the queue in the second process is the indirect cost of the time trap.  This is why time traps are such a fertile cause of excess cost – because they are hidden and because their impact is felt in a different part of the system – and usually in a different budget.

To illustrate. Suppose that 60 patients per day are discharged from our hospital and each one requires a prescription of to-take-out (TTO) medications to be completed before they can leave.  Suppose that there is a time trap in this drug dispensing and delivery process. The time trap is a policy where a porter is scheduled to collect and distribute all the prescriptions at 5 pm. The porter is busy for the whole day and this policy ensures that all the prescriptions for the day are ready before the porter arrives at 5 pm.  Suppose we get the event data from our electronic prescribing system (EPS) and we plot it as a system behaviour chart and it shows most of the sixty prescriptions are generated over a four hour period between 11 am and 3 pm. These prescriptions are delivered on paper (by our busy porter) and the pharmacy guarantees to complete each one within two hours of receipt although most take less than 30 minutes to complete. What is the cost of this one-delivery-per-day-porter-policy time trap? Suppose our hospital has 500 beds and the total annual expense is £182 million – that is £0.5 million per day.  So sixty patients are waiting for between 2 and 5 hours longer than necessary, because of the porter-policy-time-trap, and this adds up to about 5 bed-days per day – that is the cost of 5 beds – 1% of the total cost – about £1.8 million.  So the time trap is, indirectly, costing us the equivalent of £1.8 million per annum.  It would be much more cost-effective for the system to have a dedicated porter working from 12 am to 5 pm doing nothing else but delivering dispensed TTOs as soon as they are ready!  And assuming that there are no other time traps in the decision-to-discharge process;  such as the time trap created by batching all the TTO prescriptions to the end of the morning ward round; and the time trap created by the batch of delivered TTOs waiting for the nurses to distribute them to the queue of waiting patients!


Q: So how do we nail the diagnosis of a time trap and how do we differentiate it from a Batch or a Bottleneck or Carveout?

A: To learn how to do that will require a bit more explanation of the physics of processes.

And anyway if I just told you the answer you would know how but might not understand why it is the answer. Knowledge and understanding are not the same thing. Wise decisions do not follow from just knowledge – they require understanding. Especially when trying to make wise decisions in unfamiliar scenarios.

It is said that if we are shown we will understand 10%; if we can do we will understand 50%; and if we are able to teach then we will understand 90%.

So instead of showing how instead I will offer a hint. The first step of the path to knowing how and understanding why is in the following essay:

A Study of the Relative Value of Different Time-series Charts for Proactive Process Monitoring. JOIS 2012;3:1-18

Click here to visit JOIS

Safety by Despair, Desire or Design?

Imagine the health and safety implications of landing a helicopter carrying a critically ill patient on the roof of a hospital.

Consider the possible number of ways that this scenario could go horribly wrong. But in reality it does not because this is a very visible hazard and the associated risks are actively mitigated.

It is much more dangerous for a slightly ill patient to enter the doors of the hospital on their own two legs.  Surely not!  How can that be?

First the reality – the evidence.

Repeated studies have shown that about 1 in 300  emergency admissions to hospitals do not leave alive and their death is avoidable. And it is not just weekends that are risky. That means about 1 person per week for each large acute hospital in England. That is about a jumbo-jet full of people every week in England. If you want to see the evidence click here to get a copy of a recent study.

How long would an airline stay in business if it crashed one plane full of passengers every week?

And how do we know that these are the risks? Well by looking at hospitals who have recognised the hazards and the risks and have actively done something about it. The ones that have used Improvement Science – and improved.


In one hospital the death rate from a common, high-risk emergency was significantly reduced overnight simply by designing and implementing a protocol that ensured these high-risk patients were admitted to the same ward. It cost nothing to do. No extra staff or extra beds. The effect was a consistently better level of care through proactive medical management. Preventing risk rather than correcting harm. The outcome was not just fewer deaths – the survivers did better too. More of them returned to independent living – which had a huge financial implication for the cost of long term care. It was cheaper for the healthcare system. But that benefit was felt in a different budget so there was no direct financial reward to the hospital for improving the outcome.  So the improvement was not celebrated and sustained. Finance trumped Governance. Desire to improve safety is not enough.


Eventually and inevitably the safety issue will resurface and bite back.  The Mid Staffordshire Hospital debacle is a timely reminder. Eventually despair will drive change – but it will come at a high price.  The emotional knee jerk reaction driven by public outrage will be to add yet more layers of bureaucracy and cost: more inspectors, inspections and delays.  The knee jerk is not designed to understand the root cause and correct it – that toxic combination of ignorance and confidence that goes by the name arrogance.


The reason that the helicopter-on-the-hospital is safer is because it is designed to be – and one of the tools used in safe process design is called Failure Modes and Effects Analysis or FMEA.

So if there is anyone reading this who is in a senior clinical or senior mangerial role in a hospital that has any safety issues – and who has not heard of FMEA then they have a golden opportunity to learn a skill that will lead to safer-by-design hospital.

Safer-by-design hospitals are less frightening to walk into, less demotivating to work in and cheaper to run.  Everyone wins.

If you want to learn more now then click here for a short summary of FMEA from the Institute of Healthcare Improvement.

It was written in 2004. That is eight years ago.

Intuitive Counter

If it takes five machines five minutes to make five widgets how long does it take ten machines to make ten widgets?

If the answer “ten minutes” just popped into your head then your intuition is playing tricks on you. The correct answer is “five minutes“.

Let us try another.

If the lily leaves on the surface of a lake double in area every day and if it takes 48 days to cover the whole lake then how long did it take to cover half the lake?  Twenty four days? Nope. The correct answer is 47 days and once again our intuition has tricked us. It is obvious in hindsight though – just not so obvious before.

We all make thousands of unconscious, intuitive decisions every day so if we make unintended errors like this then they must be happening all the time and we do not realise. 

OK one more and really concentrate this time.

If we have a three-step sequential process and the chance of a significant safety error at each step is 10%, 30% and 20% respectively then what is the overall error rate for the process?  A: (10%+30%+20%) /3 = 60%/3 = 20%? Nope. Um 30%? Nope. What about 60%?  Nope. The answer is 49.6%. And it is not intuitively obvious how that is the correct answer.


When it comes to numbers, counting, and anything to do with chance and probability then our intuition is not a safe and reliable tool. But we rely on it all the time and we are not aware of the errors we are making. And it is not just numbers that our intuition trips us up over!


A lot of us are intuitive thinkers … about 40% in fact. The majority of leaders and executives are categorised as iNtuitors when measured using a standard psychological assessment tool. And remember – they are the ones making the Big Decisions that effect us all.  So if their intuition is tripping them up then their decisions are likely to be a bit suspect.

Fortunately there is a group of people who do not fall into these hidden cognitive counting traps so easily. They have Books of Rules of how to do numbers correctly – and they are called Accountants. When they have the same standard assessment a lot of them pop up at the other end of the iNtuitor dimension. They are called Sensors.   Not because they are sensitive (which of course they are) but because they rank reality more trustworthy than rhetoric. They trust what they see – the facts – the numbers.  And money is a number. And numbers  add up exactly so that everything is neat, tidy, and auditable down to the last penny. Ahhhh – Blisse is Balanced Books and Budgets.  


This is why the World is run by Accountants.  They nail our soft and fuzzy intuitive rhetoric onto the hard and precise fiscal reality.  And in so doing a big and important piece of the picture is lost. The fuzzy bit,


Intuitors have a very important role. They are able to think outside the Rule Book Box. They are comfortable working with fuzzy concepts and in abstract terms and their favourite sport is intuitive leaping. It is a high risk sport though because sometimes Reality reminds them that the Laws of Physics are not optional or subject to negotiation and innovation. Ouch!  But the iNtuitors ability to leap about conceptuallycomes in very handy when the World is changing unpredictably – because it allows the Books of Rules to be challenged and re-written as new discoveries are made. The first Rule is usually “Do not question the Rules” so those who follow Rules are not good at creating new ones. And those who write the rules are not good at sticking to them.

So, after enough painful encounters with Reality the iNtuitors find their comfort zones in board rooms, academia and politics – where they can avoid hard Reality and concentrate on soft Rhetoric. Here they can all have a different conceptual abstract mental model and can happily discuss, debate and argue with each other for eternity. Of course the rest of the Universe is spectacularly indifferent to board room, academic and political rhetoric – but the risk to the disinterested is when the influential iNtuitors impose their self-generated semi-delusional group-think on the Real World without a doing a Reality Check first.  The outcome is entirely predictable ….

And as the hot rhetoric meets cold reality the fog of disillusionment forms. 


So if we wish to embark on a Quest for Improvement then it is really helpful to know where on the iNtuitor-Sensor dimension each of us prefers to sit. Intuitors need Sensors to provide a reality check and Sensors need Intuitors to challenge the status quo.  We are not nailed to our psychological perches – we can shuffle up and down if need be – we do have a favourite spot though; our comfort zone.

To help answer the “Where am I on the NS dimension?” question here is a  Temperament Self-Assessment Tool that you can use. It is based on the Jungian, Myers-Briggs and Keirsey models. Just run the programme, answer the 72 questions and you will get your full 4-dimensional profile and your “centre” on each. Then jot down the results on a scrap of paper. 

There is a whole industry that has sprung up out these (and other) psychological assessment tools. They feed our fascination with knowing what makes us tick and the role of the psychoexpert is to de-mystify the assessments for us and to explain the patterns in the tea leaves (for a fee of course because it takes years of training to become a Demystifier). Disappointingly, my experience is that almost every person I have asked if they know their Myers-Briggs profile say “Oh yes, I did that years ago, it is SPQR or something like that but I have no idea what it means“.  Maybe they should ask for their Demystification Fee to be returned?

Anyway – here is the foundation level demystification guide to help you derive meaning from what is jotted on the scrap of paper.

First look at the N-S (iNtuitor-Sensor) dimension.  If you come out as N then look at the T-F (Thinking-Feeling) dimension – and together they will give an xNTx preference or an xNFx preference. People with these preferences are called Rationals and Idealists respectively.  If you prefer the S end of the N-S dimension then look at the J-P (Judging-Perceiving) result and this will give an xSxJ or xSxP preference. These are the Guardians and the Artisans.  Those are the Four Temperaments described by David Keirsey in “Please Understand Me II“. If you are near the middle of any of the dimensions then you will show a blend of temperaments. And please note – it is not an either-or category – it is a continuous spectrum.

How we actually manifest our innate personality preferences depends on our education, experiences and the exact context. This makes it a tricky to interpret the specific results for an individual – hence the Tribe of Demystificationists. And remember – these are not intelligence tests, and there are no good/bad or right/wrong answers. They are gifts – or rather gifts differing. 


So how does all this psychobabble help us as Improvement Scientists?

Much of Improvement Science is just about improving awareness and insight – so insight into ourselves is of value.  

Rationals (xNTx) are attracted to occupations that involve strategic thinking and making rational, evidence based decisions: such as engineers and executives. The Idealists (xNFx) are rarer, more sensitive, and attracted to occupations such as teaching, counselling, healing and being champions of good causes.  The Guardians (xSxJ) are particularly numerous and are attracted to occupations that form the stable bedrock of society – administrators, inspectors, supervisors, providers and protectors. They value the call-of-duty and sticking-to-the-rules for the good-of-all. Artisans (SPs) are the risk-takers and fun-makers; the promotors, the entertainers, the explorers, the dealers, the artists, the marketeers and the salespeople.

These are the Four Temperaments that form the basic framework of the sixteen Myers-Briggs polarities.  And this is not a new idea – it has been around for millenia – just re-emerging with different names in different paradigms. In the Renaissance the Galenic Paradigm held sway and they were called the Phlegmatics (NT), the Cholerics (NF), the Melancholics (SJ) and the Sangines (SP) – depending on which of the four body fluids were believed to be out of balance (phlegm, yellow bile, black bile or blood). So while the paradigms have changed, the empirical reality appears to have endured the ages.

The message for the Improvement Scientist is two-fold:

1. Know your own temperament and recognise the strengths and limitations of it. They all have a light and dark side.
2. Understand that the temperaments of groups of people can be both synergistic and antagonistic.

It is said that birds of a feather flock together and the collective behaviour of departments in large organisations tend to form around the temperament that suits that organisational function.  The character of the Finance department is usually very different to that of Operations, or Human Resources – and sparks can (and do) fly when they engage each other. No wonder chief executives have a short half-life and an effective one is worth its weight in gold! 

The interdepartmental discord that is commonly observed in large organisations follows more from ignorance (unawareness of the reality of a spectrum of innate temperaments) and arrogance (expecting everyone to think the same way as we do). Antagonism is not an inevitable consequence though – it is just the default outcome in the absence of awareness and effective leadership.

This knowledge highlights two skills that an effective Improvement Scientist needs to master:

1. Respectful Educator (drawing back the black curtain of ignorance) and
2. Respectful Challenger (using reality to illuminate holes in the rhetoric).

Intuitive counter or counter intuitive?

Structure Time to Fuel Improvement

The expected response to any suggestion of change is “Yes, but I am too busy – I do not have time.”

And the respondent is correct. They do not.

All their time is used just keeping their head above water or spinning the hamster wheel or whatever other metaphor they feel is appropriate.  We are at an impasse. A stalemate. We know change requires some investment of time and there is no spare time to invest so change cannot happen. Yes?  But that is not good enough – is it?

Well-intended experts proclaim that “I’m too busy” actually means “I have other things to do that are higher priority“. And by that we mean ” … that are a greater threat to my security and to what I care about“. So to get our engagement our well-intended expert pours emotional petrol on us and sets light to it. They show us dramatic video evidence of how our “can’t do” attitude and behaviour is part of the problem. We are the recalcitrant child who is standing in the way of  change and we need to have our face rubbed in our own cynical poo.

Now our platform is really burning. Inflamed is exactly what we are feeling – angry in fact. “Thanks-a-lot. Now #!*@ off!”   And our well-intentioned expert retreats – it is always the same. The Dinosaurs and the Dead Wood are clogging the way ahead.

Perhaps a different perspective might be more constructive.


It is not just how much time we have that is most important – it is how our time is structured.


Humans hate unstructured time. We like to be mentally active for all of our waking moments. 

To test this hypothesis try this demonstration of our human need to fill idle time with activity. When you next talk to someone you know well – at some point after they have finished telling you something just say nothing;  keep looking at them; and keep listening – and say nothing. For up to twenty seconds if necessary. Both you and they will feel an overwhelming urge to say something, anything – to fill the silence. It is called the “pregnant pause effect” and most people find even a gap of a second or two feels uncomfortable. Ten seconds would be almost unbearable. Hold your nerve and stay quiet. They will fill the gap.

This technique is used by cognitive behavioural therapists, counsellors and coaches to help us reveal stuff about ourselves to ourselves – and it works incredibly well. It is also used for less altrusitic purposes by some – so when you feel the pain of the pregnant pause just be aware of what might be going on and counter with a question.


If we have no imposed structure for our time then we will create one – because we feel better for it. We have a name for these time-structuring behaviours: habits, past-times and rituals. And they are very important to us because they reduce anxiety.

There is another name for a pre-meditated time-structure:  it is called a plan or a process design. Many people hate not having a plan – and to them any plan is better than none. So in the absence of an imposed alternative we habitually make do with time-wasting plans and poorly designed processes.  We feel busy because that is the purpose of our time-structuring behaviour – and we look busy too – which is also important. This has an important lesson for all improvement scientists: Using a measure of “business” such as utilisation as a measure of efficiency and productivity is almost meaningless. Utilisation does not distinguish between useful busi-ness and useless busi-ness.

We also time-structure our non-working lives. Reading a newspaper, doing the crossword, listening to the radio,  watching television, and web-browsing are all time-structuring behaviours.


This insight into our need for structured time leads to a rational way to release time for change and improvement – and that is to better structure some of our busy time.

A useful metaphor for a time-structure is a tangible structure – such as a building. Buildings have two parts – a supporting, load bearing, structural framework and the functional fittings that are attached to it. Often the structural framework is invisible in the final building – invisible but essential. That is why we need structural engineers. The same is true for time-structuring: the supporting form should be there but it should not not get in the way of the intended function. That is why we need process design engineers too. Good process design is invisible time-structuring.


One essential investment of time in all organisations is communication. Face-to-face talking, phone calls, SMS, emails, reports, meetings, presentations, webex and so on. We spend more time communicating with each other than doing anything else other than sleeping.  And more niggles are generated by poorly designed and delivered communication processes than everything else combined. By a long way.


As an example let us consider management meetings.

From a process design perspective mmany management meetings are both ineffective and inefficient. They are unproductive.  So why do we still have them?

One possibkle answer is because meetings have two other important purposes: first as a tool for social interaction, and second as a way to structure time.  It turns out that we dislike loneliness even more than idleness – and we can meet both needs at the same time by having a meeting. Productivity is not the primary purpose.


So when we do have to communicate effectively and efficiently in order to collectively resolve a real and urgent problem then we are ill prepared. And we know this. We know that as soon as Crisis Management Committees start to form then we are in really big trouble. What we want in a time of crisis is for someone to structure time for us. To tell us what to do.

And some believe that we unconsciously create crisis after crisis for just that purpose.


Recently I have been running an improvement experiment.  I have  been testing the assumption that we have to meet face-to-face to be effective. This has big implications for efficiency because I work in a multi-site organisation and to attend a meeting on another site implies travelling there and back. That travel takes one hour in each direction when all the separate parts are added together. It has two other costs. The financial cost of the fuel – which is a variable cost – if I do not travel then I do not incur the cost. And there is an emotional cost – I have to concentrate on driving and will use up some of my brain-fuel in doing so. There are three currencies – emotional, temporal and financial.

The experiment was a design change. I changed the design of the communication process from at-the-same-place-and-time to just at-the-same-time. I used an internet-based computer-to-computer link (rather like Skype or FaceTime but with some other useful tools like application sharing).

It worked much better than I expected.

There was the anticipated “we cannot do this because we do not have webcams and no budget for even pencils“. This was solved by buying webcams from the money saved by not burning petrol. The conversion rate was one webcam per four trips – and the webcam is a one off capital cost not a recurring revenue cost. This is accpiuntant-speak for “the actual cash released will fund the change“. No extra budget is required. And combine the fuel savings for everyone, and parking charges and the payback time is even shorter.

There were also the anticipated glitches as people got used to the unfamiliar technology (they did not practice of course because they were too busy) but the niggles go away with a few iterations.

So what were the other benefits?

Well one was the travel time saved – two hours per meeting – which was longer than the meeting! The released time cannot be stored and used later like the money can – it has to be reinvested immediately. I reinvested it in other improvement work. So the benefit was amplified.

Another was the brain-fuel saved from not having to drive – which I used to offset my cumuative brain-fuel deficit called chronic fatigue. The left over was re-invested in the improvement work. 100% recycled. Nothing was wasted.


The unexpected benefit was the biggest one.

The different communication design of a virtual meeting required a different form of meeting structure and discipline. It took a few iterations to realise this – then click – both effectiveness and efficiency jumped up. The time became even better structured, more productive and released even more time to reinvest. Wow!

And the whole thing funded itself.

The Frightening Cost Of Fear

The recurring theme this week has been safety and risk.

Specifically in a healthcare context. Most people are not aware just how risky our current healthcare systems are. Those who work in healthcare are much more aware of the dangers but they seem powerless to do much to make their systems safer for patients.


The shroud-waving  zealots who rant on about safety often use a very unhelpful quotation. They say “Every system is perfectly designed to deliver the performance it does“. The implication is that when the evidence shows that our healthcare systems are dangerous …. then …. we designed them to be dangerous.  The reaction from the audience is emotional and predictable “We did not intend this so do not try to pin the blame on us!”  The well-intentioned shroud-waving safety zealot loses whatever credibility they had and the collective swamp of cynicism and despair gets a bit deeper.


The warning-word here is design – because it has many meanings.  The design of a system can mean “what the system is” in the sense of a blueprint. The design of a system can also mean “how the blueprint was created”.  This process sense is the trap – because it implies intention.  Design needs a purpose – the intended outcome – so to say an unsafe system has been designed is to imply that it was intended to be unsafe. This is incorrect.

The message in the emotional backlash that our well-intended zealot provoked is “You said we intended bad things to happen which is not correct so if you are wrong on that fundamental belief then how can I trust anything else you say?“. This is the reason zealots lose credibility and actually make improvement less likely to happen.


The reality is not that the system was designed to be unsafe – it is that it was not designed not to be. The double negatives are intentional. The two statements are not the same.


The default way of the Universe is evolutionary (which is unintentional and reactive) and chaotic (which is unstable and unsafe). To design a system to be not-unsafe we need to understand Two Sciences – Design Science and Safety Science. Only then can we proactively and intentionally design safe, stable, and trustable systems.    If we do nothing and do not invest in mastering the Two Sciences then we will get the default outcome: unintended unsafety.  This is what the uncomfortable  evidence says we have.


So where does the Frightening Cost of Fear come in?

If our system is unintentionally and unpredictably unsafe then of course we will try to protect ourselves from the blame which inevitably will follow from disappointed customers.  We fear the blame partly because we know it is justified and partly because we feel powerless to avoid it. So we cover our backs. We invent and implement complex check-and-correct systems and we document everything we do so that we have the evidence in the inevitable event of a bad outcome and the backlash it unleashes. The evidence that proves we did our best; it shows we did what the safety zealots told us to do; it shows that we cannot be held responsible for the bad outcome.

Unfortunately this strategy does little to prevent bad outcomes. In fact it can have has exactly the opposite effect of what is intended. The added complexity and cost of our cover-my-back bureaucracy actually increases the stress and chaos and makes bad outcomes more likely to happen. It makes the system even less safe. It does not deflect the blame. It just demonstrates that we do not understand how to design a not-unsafe system.


And the financial cost of our fear is frighteningly high.

Studies have shown that over 60% of nursing time is spent on documentation – and about 70% of healthcare cost is on hospital nurse salaries. The maths is easy – at least 42% of total healthcare cost is spent on back-covering-blame-deflection-bureaucracy.

It gets worse though.

Those legal documents called clinical records need to be moved around and stored for a minimum of seven years. That is expensive. Converting them into an electronic format misses the point entirely. Finding the few shreds of valuable clinical information amidst the morass of back-covering-bureaucracy uses up valuable specialist time and has a high risk of failure. Inevitably the risk of decision errors increases – but this risk is unmeasured and is possibly unmeasurable. The frustration and fear it creates is very obvious though: to anyone willing to look.

The cost of correcting the Niggles that have been detected before they escalate to Not Agains, Near Misses and Never Events can itself account for half the workload. And the cost of clearing up the mess after the uncommon but inevitable disaster becomes built into the system too – as insurance premiums to pay for future litigation and compensation. It is no great surprise that we have unintentionally created a compensation culture! Patient expectation is rising.

Add all those costs up and it becomes plausible to suggest that the Cost of Fear could be a terrifying 80% of the total cost!


Of course we cannot just flick a switch and say “Right – let us train everyone in safe system design science“.  What would all the people who make a living from feeding on the present dung-heap do? What would the checkers and auditors and litigators and insurers do to earn a crust? Join the already swollen ranks of the unemployed?


If we step back and ask “Does the Cost of Fear principle apply to everything?” then we are faced with the uncomfortable conclusion that it most likely is.  So the cost of everything we buy will have a Cost of Fear component in it. We will not see it written down like that but it will be in there – it must be.

This leads us to a profound idea.  If we collectively invested in learning how to design not-unsafe systems then the cost of everything could fall. This means we would not need to work as many hours to earn enough to pay for what we need to live. We could all have less fear and stress. We could all have more time to do what we enjoy. We could all have both of these and be no worse off in terms of financial security.

This Win-Win-Win outcome feels counter-intuitive enough to deserve serious consideration.


So here are some other blog topics on the theme of Safety and Design:

Never Events, Near Misses, Not Agains and Nailing Niggles

The Safety Line in the Quality Sand

Safety By Design

Standard Ambiguity

One that causes much confusion and debate in the world of Improvement is the word standard – because it has so many different yet inter-related meanings.

It is an ambiguous word and a multi-facetted concept.

For example, standard method can be the normal way of doing something (as in a standard operating procedure  or SOP); standard can be the expected outcome of doing something; standard can mean the minimum acceptable quality of the output (as in a safety standard); standard can mean an aspirational performance target; standard can mean an absolute reference or yardstick (as in the standard kilogram); standard can mean average; and so on.  It is an ambiguous word.

So, it is no surprise that we get confused. And when we feel confused we get scared and we try to relieve our fear by asking questions; which doesn’t help because we don’t get clear answers.  We start to discuss, and debate and argue and all this takes effort, time and inevitably money.  And the fog of confusion does not lift.  If anything it gets denser.  And the reason? Standard Ambiguity.


One contributory factor is the perennial confusion between purpose and process.  Purpose is the Why.  Process is the How.  The concept of Standard applied to the Purpose will include the outcomes: the minimum acceptable (safety standard), the expected (the specification standard) and the actual (the de facto standard).  The concept of Standard applied to the Process would include the standard operating procedures and the reference standards for accurate process measurement (e.g. a gold standard).


To illustrate the problems that result from confusing purpose standards with process standards we need look no further than education.

Q: What is the purpose of a school? Why does a school exist:

A:To deliver people who have achieved their highest educational potential perhaps.

Q: What is the purpose of an exam board? Why does an exam board exist?

A: To deliver a common educational reference standard and to have a reliable method for comparing individual pupils against that reference standard perhaps.

So, where does the idea of “Being the school that achieved the highest percentage of top grades?” fit with these two purpose standards?  Where does the school league table concept fit?  It is not obvious to see immediately.  But, you might say, we do want to improve the educational capability of our population because that is a national and global asset in an increasingly complex, rapidly changing, high technology world.  Surely a league table will drive up the quality of education? But it doesn’t seem to be turning out that way. What is getting in the way?


What might be getting in the way is how we often conflate collaboration with competition.

It seems that many believe we can only have either collaboration or competition.  Either-Or thinking is a trap for the unwary and whenever these words are uttered a small alarm bell should ring.  Are collaboration and competition mutually exclusive? Or are we just making this assumption to simplify the problem? PS. We do that a lot.


Suppose the exam boards were both competing and collaborating with each other. Suppose they collaborated to set and to maintain a stable and trusted reference standard; and suppose that they competed to provide the highest quality service to the schools – in terms of setting and marking exams. What would happen?

Firstly, an exam board that stepped out of line in terms of these standards would lose its authority to set and mark exams – it would cut its own commercial throat.  Secondly, the quality of the examination process would go up because those who invest in doing that will attract more of the market share.

What about the schools – what if they both collaborated and competed too?  What if they collaborated to set and maintain a stable and trusted reference standard of conduct and competency of their teachers – and what if they competed to improve the quality of their educational process. The best schools  would attract the most pupils.

What can happen if we combine competition and collaboration is that the sum becomes greater than the parts.


A similar situation exists in healthcare.  Some hospitals are talking about competing to be the safest hospitals and collaborating to improve quality.  It sounds plausible but it is rational?

Safety is an absolute standard – it is the common minimum acceptable quality.  No hospital should fail on safety so this is not a suitable subject for competition.  All hospitals could collaborate to set and to maintain safety – helping each other by sharing data, information, knowledge, understanding and wisdom.  And with that Foundation of Trust they can then compete on quality – using their natural competitive spirit to pull them ever higher. Better quality of service, better quality of delivery and better quality of performance – including financial. Win-win-win.  And when the quality of everything improves through collaborative and competitive upwards pull, then the achievable level of minimum acceptable quality increases.  This means that the Safety Standard can improve too.  Everyone wins.


Predictable and Explainable – or Not

It is a common and intuitively reasonable assumption to believe that if something is explainable then it is predictable; and if it is not explainable then it is not predictable. Unfortunately this beguiling assumption is incorrect.  Some things are explainable but not predictable; and some others are predictable but not explainable.  Believe me? Of course not. We are all skeptics when our intuitively obvious assumptions and conclusions are challenged! We want real and rational evidence not rhetorical exhortation.

OK.  Explainable means that the principles that guide the process are conceptually simple. We can explain the parts in detail and we can explain how they are connected together in detail. Predictable implies that if we know the starting point in detail, and the intervention in detail, then we can predict what the outcome will be – in detail.


Let us consider an example. Say we know how much we have in our bank account, and we know how much we intend to spend on that new whizzo computer, then we can predict what will be left in out bank account when the payment has been processed. Yes. This is an explainable and predictable system. It is called a linear system.


Let us consider another example. Say we know we have six dice each with numbers 1 to 6 printed on them and we throw them at the same time. Can we predict where they will land and what the final sum will be? No. We can say that it will be between 6 and 36 but that is all. And after we have thrown the dice we will not be able to explain, in detail, how they came to rest exactly where they did.  This is an unpredictable and unexplainable system. It is called a random system.


This is a picture of a conceptually simple system. It is a novelty toy and it comprises two thin sheets of glass held a few millimetres apart by some curved plastic spacers. The narrow space is filled with green coloured oil, some coarse black volcanic sand, and some fine white coral sand. That is all. It is a conceptually simple toy. I have (by some magical means) layered the sand so that the coarse black sand is at the bottom and the fine white sand is on top. It is stable arrangement – and explainable. I then tipped the toy on its side – I rotated it through 90 degrees. It is a simple intervention – and explainable.

My intervention has converted a stable system to an unstable one and I confidently predict that the sand and oil will flow under the influence of gravity. There is no randomness here – I do not jiggle the toy – so the outcome should be predictable because I can explain all the parts in detail before we start;  and I can explain the process in detail; and I can explain precisely what my intervention will be. So I should be able to predict the final configuration of the sand when this simple and explainable system finally settles into a new stable state again. Yes?

Well, I cannot. I can make some educated guesses – some plausible projections. But the only way to find out precisely what will happen is by doing the experiment and observing what actually happens.

This is what happened.

The final, stable configuration of the coarse black and fine white sand has a strange beauty in the way the layers are re-arranged. The result is not random – it has structure. And with the benefit of hindsight I feel I can work backwards and understand how it might have come about. It is explainable in retrospect but I could not predict it in prospect – even with a detailed knowledge of the starting point and the process.

This is called a non-linear system. Explainable in concept but difficult to predict in practice. The weather is another example of a non-linear system – explainable in terms of the physics but not precisely predictable. How reliable are our long range weather forecasts – or the short range ones for that matter?

Non-linear systems exhibit complex and unpredictable  behaviour – even though they may be simple in concept and uncomplicated in construction.  Randomness is usually present in real systems but it is not the cause of the complex behaviour, and making our systems more complicated seems likely to result in more unpredictable behaviour – not less.

If we want the behaviour of our system to be predictable and our system has non-linear parts and relationships in it – then we are forced to accept two Universal Truths.

1. That our system behaviour will only be predictable within limits (even if there is little or no randomness in it).

2. That to keep the behaviour within acceptable limits then we need to be careful how we arrange the parts and how they relate to each other.

This challenge of creating a predictable-within-acceptable-limits system from non-linear parts is called resilient design.


We have a fourth option to consider: a system that has a predictable outcome but an unexplainable reason.

We make predictions two ways – by working out what will happen or by remembering what has happened before. The second method is much easier so it is the one we use most of the time: it is called re-cognition. We call it knowledge.

If we have a black box with inputs on one side and outputs on the other, and we observe that when we set the inputs to a specific configuration we always get the same output – then we have a predicable system. We cannot explain how the inputs result in the output because the inner workings are hidden. It could be very simple – or it could be fiendishly complicated – we do not know.

It this situation we have no choice but to accept the status quo – and we have to accept that to get a predictable outcome we have to follow the rules and just do what we have always done before. It is the creed of blind acceptance – the If you always do what you have always done you will always get what you always got. It is knowledge but it is not understanding.  New knowledge  can only be found by trial and error.  It is not wisdom, it is not design, it is not curiosity and it is not Improvement Science.


If our systems are non-linear (which they are) and we want predictable and acceptable performance (which we do) then we must strive to understand them and then to design them to be as simple as possible (which is difficult) so that we have the greatest opportunity to improve their performance by design (which is called Improvement Science).


This is a snapshot of the evolving oil-and-sand system. Look at that weird wine-glass shaped hole in the top section caused by the black sand being pulled down through the gap in the spacer then running down the slope of the middle section to fill a white sand funnel and then slip through the next hole onto the top of the white sand pyramid created by the white sand in the middle section that slipped through earlier onto the top of the sliding sand in the lowest section. Did you predict that? I suspect not. Me neither. But I can explain it – with the benefit of hindsight.

So what is it that is causing this complex behaviour? It is the spacers – the physical constraints to the flow of the sand and oil. And the same is true of systems – when the process hits a constraint then the behaviour suddenly changes and complex behaviour emerges.  And there is more to it than even this. It is the gaps between the spacers that is creating the complex behaviour. The flow from one compartment leaking into the next and influencing its behaviour, and then into the next.  This is what happens in all systems – the more constraints that are added to force the behaviour into predictable channels, and the more gaps that exist in the system of constraints then the more complex and unpredictable the system behaviour becomes. Which is exactly the opposite of the intended outcome.


The lesson that this simple toy can teach us is that if we want stable and predictable (i.e. non-complex) behaviour from our complicated systems then we must design them to operate inside the constraints so that they just never quite touch them. That requires data, information, knowledge, understanding and wise design. That is called Improvement Science.


But if, in an act of desperation, we force constraints onto the system we will make the system less stable, less predictable, less safe, less productive, less enjoyable and less affordable. That is called tampering.

Little and Often

There seem to be two extremes to building the momentum for improvement – One Big Whack or Many Small Nudges.


The One Big Whack can come at the start and is a shock tactic designed to generate an emotional flip – a Road to Damascus moment – one that people remember very clearly. This is the stuff that newspapers fall over themselves to find – the Big Front Page Story – because it is emotive so it sells newspapers.  The One Big Whack can also come later – as an act of desperation by those in power who originally broadcast The Big Idea and who are disappointed and frustrated by lack of measurable improvement as the time ticks by and the money is consumed.


Many Small Nudges do not generate a big emotional impact; they are unthreatening; they go almost unnoticed; they do not sell newspapers, and they accumulate over time.  The surprise comes when those in power are delighted to discover that significant improvement has been achieved at almost no cost and with no cajoling.

So how is the Many Small Nudge method implemented?

The essential element is The Purpose – and this must not be confused with A Process.  The Purpose is what is intended; A Process is how it is achieved.  And answering the “What is my/our purpose?” question is surprisingly difficult to do.

For example I often ask doctors “What is our purpose?”  The first reaction is usually “What a dumb question – it is obvious”.  “OK – so if it is obvious can you describe it?”  The reply is usually “Well, err, um, I suppose, um – ah yes – our purpose is to heal the sick!”  “OK – so if that is our purpose how well are we doing?”  Embarrassed silence. We do not know because we do not all measure our outcomes as a matter of course. We measure activity and utilisation – which are measures of our process not of our purpose – and we justify not measuring outcome by being too busy – measuring activity and utilisation.

Sometimes I ask the purpose question a different way. There is a Latin phrase that is often used in medicine: primum non nocere which means “First do no harm”.  So I ask – “Is that our purpose?”.  The reply is usually something like “No but safety is more important than efficiency!”  “OK – safety and efficiency are both important but are they our purpose?”.  It is not an easy question to answer.

A Process can be designed – because it has to obey the Laws of Physics. The Purpose relates to People not to Physics – so we cannot design The Purpose, we can only design a process to achieve The Purpose. We can define The Purpose though – and in so doing we achieve clarity of purpose.  For a healthcare organisation a possible Clear Statement of Purpose might be “WE want a system that protects, improves and restores health“.

Purpose statements state what we want to have. They do not state what we want to do, to not do or to not have.  This may seem like a splitting hairs but it is important because the Statement of Purpose is key to the Many Small Nudges approach.

Whenever we have a decision to make we can ask “How will this decision contribute to The Purpose?”.  If an option would move us in the direction of The Purpose then it gets a higher ranking to a choice that would steer us away from The Purpose.  There is only one On Purpose direction and many Off Purpose ones – and this insight explains why avoiding what we do not want (i.e. harm) is not the same as achieving what we do want.  We can avoid doing harm and yet not achieve health and be very busy all at the same time.


Leaders often assume that it is their job to define The Purpose for their Organisation – to create the Vision Statement, or the Mission Statement. Experience suggests that clarifying the existing but unspoken purpose is all that is needed – just by asking one little question – “What is our purpose?” – and asking it often and of everyone – and not being satisfied with a “process” answer.